Integral membrane proteins (IMPs) constitute a large fraction of organismal proteomes, playing fundamental roles in physiology and disease. Despite their importance, the mechanisms underlying dynamic features of IMPs, such as anomalous diffusion, protein-protein interactions, and protein clustering, remain largely unknown due to the high complexity of cell membrane environments. Available methods for in vitro studies are insufficient to study IMP dynamics systematically. This publication introduces the freestanding bilayer microscope (FBM), which combines the advantages of freestanding bilayers with single-particle tracking. The FBM, based on planar lipid bilayers, enables the study of IMP dynamics with single-molecule resolution and unconstrained diffusion. This paper benchmarks the FBM against total internal reflection fluorescence imaging on supported bilayers and is used here to estimate ion channel open probability and to examine the diffusion behavior of an ion channel in phase-separated bilayers. The FBM emerges as a powerful tool to examine membrane protein/lipid organization and dynamics to understand cell membrane processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192074 | PMC |
http://dx.doi.org/10.1126/sciadv.ado4722 | DOI Listing |
Chembiochem
December 2024
Nankai University, Analytical Sciences, No. 94, Weijin Road, 300071, Tianjin, CHINA.
Smart shape-memory DNA hydrogels, which can respond to various types of external stimuli and undergo macroscopic shape deformations, have shown great potential in various applications. By constructing free-standing films, the deformation and response properties of these hydrogels can be further enhanced, and visualized deformation can be achieved. However, DNA hydrogels that can exhibit rapid and high-degree shape deformations, such as the inverse shape deformations, are still lacking.
View Article and Find Full Text PDFBMB Rep
December 2024
Department of Physics, POSTECH, Pohang, Republic of Korea.
Model membrane systems have emerged as essential platforms for investigating membrane-associated processes in controlled environments, mimicking biological membranes without the complexity of cellular systems. However, integrating these model systems with single-molecule techniques remains challenging due to the fluidity of lipid membranes, including undulations and the lateral mobility of lipids and proteins. This mini-review explores the evolution of various model membranes ranging from black lipid membranes to nanodiscs and giant unilamellar vesicles as they adapt to accommodate electrophysiology, force spectroscopy, and fluorescence microscopy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea.
This study introduces a flexible and scalable charge-trapping intermediate layer of conjugated polymeric film comprising [PANI/PEDOT:PSS] between the [PVA/PDDA] triboelectric layer and graphene-based [PVA/GNP-PSS] electrode using the layer-by-layer (LbL) assembly method. By varying the deposition layers, the optimal coating layout was identified as 2 and 8 bilayers of intermediate and triboelectric layers, respectively. The triboelectric nanogenerator (TENG) fabricated with this optimal configuration achieved peak output voltage and current of 180 V and 9 μA, respectively, at 3 Hz and 5 N against PDMS.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
The synthesis of large, freestanding, single-atom-thick two-dimensional (2D) metallic materials remains challenging due to the isotropic nature of metallic bonding. Here, we present a bottom-up approach for fabricating macroscopically large, nearly freestanding 2D gold (Au) monolayers, consisting of nanostructured patches. By forming Au monolayers on an Ir(111) substrate and embedding boron (B) atoms at the Au/Ir interface, we achieve suspended monoatomic Au sheets with hexagonal structures and triangular nanoscale patterns.
View Article and Find Full Text PDFNanoscale
December 2024
Center for Nanoscience and Engineering, Indian Institute of Science, Bengaluru, 560012, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!