Background: Predicting and explaining species occurrence using environmental characteristics is essential for nature conservation and management. Species distribution models consider species occurrence as the dependent variable and environmental conditions as the independent variables. Suitable conditions are estimated based on a sample of species observations, where one assumes that the underlying environmental conditions are known. This is not always the case, as environmental variables at broad spatial scales are regularly extrapolated from point-referenced data. However, treating the predicted environmental conditions as accurate surveys of independent variables at a specific point does not take into account their uncertainty.

Methods: We present a joint hierarchical Bayesian model where models for the environmental variables, rather than a set of predicted values, are input to the species distribution model. All models are fitted together based only on point-referenced observations, which results in a correct propagation of uncertainty. We use 50 plant species representative of the Dutch flora in natural areas with 8 soil condition predictors taken during field visits in the Netherlands as a case study. We compare the proposed model to the standard approach by studying the difference in associations, predicted maps, and cross-validated accuracy.

Findings: We find that there are differences between the two approaches in the estimated association between soil conditions and species occurrence (correlation 0.64-0.84), but the predicted maps are quite similar (correlation 0.82-1.00). The differences are more pronounced in the rarer species. The cross-validated accuracy is substantially better for 5 species out of the 50, and the species can also help to predict the soil characteristics. The estimated associations tend to have a smaller magnitude with more certainty.

Conclusion: These findings suggests that the standard model is often sufficient for prediction, but effort should be taken to develop models which take the uncertainty in the independent variables into account for interpretation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192322PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304942PLOS

Publication Analysis

Top Keywords

species occurrence
12
environmental conditions
12
independent variables
12
species
11
environmental characteristics
8
point-referenced data
8
species distribution
8
environmental variables
8
model models
8
predicted maps
8

Similar Publications

Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.

View Article and Find Full Text PDF

Small rodents can cause problems on farms such as infrastructure damage, crop losses or pathogen transfer. The latter threatens humans and livestock alike. Frequent contacts between wild rodents and livestock favour pathogen transfer and it is therefore important to understand the movement patterns of small mammals in order to develop strategies to prevent damage and health issues.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Background: Alzheimer's disease (AD) is the foremost cause of global dementia, also characterized by retinal changes involving Aβ, hyperphosphorylated-tau (p-tau), neuronal degeneration, and tissue atrophy. Mitochondrial-driven reactive oxygen species (ROS) production, linked to synaptic dysfunction, is common to various neurodegenerative conditions, including AD. Despite synaptic dysfunction being an early predictor of cognitive decline in AD, its occurrence in the AD retina is unexplored.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Zoology, University of Lucknow, Lucknow, India.

Background: Various investigations have elucidated the impact of diet and environmental toxins on the aging process. Melamine (Mel) is a widely recognized and infamous food adulterant with documented toxicity in various organs, including the brain. Nevertheless, there is currently a dearth of reports on the neurotoxic effects of Mel in aging neurons.

View Article and Find Full Text PDF

Purpose Of Review: This narrative review includes the latest clinical and preclinical evidence on fatty acid exposure and telomere length, a widely accepted hallmark of aging.

Recent Findings: A large body of literature focused on n-3 (omega-3) polyunsaturated fatty acids (PUFAs). Observational studies reported beneficial associations with telomere length for self-reported consumption of n-3 PUFA-rich foods; for estimated intake of n-3 PUFAs; and for n-3 PUFAs blood-based biomarkers in most (but not all) studies involving lipidomics, a promising tool in the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!