The temperature sensitivities of photosynthesis and respiration remain a key uncertainty in predicting how forests will respond to climate warming. We grew seedlings of four temperate tree species, including Betula platyphylla, Fraxinus mandshurica, Juglans mandshurica and Tilia amurensis, at three temperature regimes (ambient, +2 °C, and +4 °C in daytime air temperature). We investigated net photosynthesis (Anet25), maximum rate of RuBP-carboxylation (Vcmax25) and RuBP-regeneration (Jmax25), stomatal conductance (gs25), mesophyll conductance (gm25), and leaf respiration (Rleaf) in dark (Rdark25) and in light (Rlight25) at 25 °C in all species. Additionally, we examined the temperature sensitivities of Anet, Vcmax, Jmax, Rdark and Rlight in F. mandshurica. Our findings showed that the warming-induced decreases in Anet25, Vcmax25 and Jmax25 were more prevalent in the late-successional species T. amurensis. Warming had negative impacts on gs25 in all species. Overall, Anet25 was positively correlated with Vcmax25 and Jmax25 across all growth temperatures. However, a positive correlation between Anet25 and gs25 was observed only under warming conditions, and gs25 was negatively associated with vapor pressure deficit. This implies that the vapor pressure deficit-induced decrease in gs25 was responsible for the decline in Anet25 at higher temperatures. The optimum temperature of Anet in F. mandshurica increased by 0.59 °C per 1.0 °C rise in growth temperature. While +2 °C elevated the thermal optima of Jmax, it did not affect the other temperature sensitivity parameters of Vcmax and Jmax. Rdark25 was not affected by warming in any species, and Rlight25 was stimulated in T. amurensis. The temperature response curves of Rdark and Rlight in F. mandshurica were not altered by warming, implying a lack of thermal acclimation. The ratios of Rdark25 and Rlight25 to Anet25 and Vcmax25 in T. amurensis increased with warming. These results suggest that Anet and Rleaf did not acclimate to warming synchronously in these temperate tree species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpae070 | DOI Listing |
Sci Rep
January 2025
Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str, Krakow, 31-425, Poland.
Tree species through aboveground biomass and roots are a key factors influencing the quality and quantity of soil organic matter. Our study aimed to determine the stability of soil organic matter in Luvisols under the influence of five different tree species. The study areas were located 25 km north of Krakow, in southern Poland.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, al. 29 Listopada 46, 31-425 Kraków, Poland. Electronic address:
Tree-related Microhabitats (TreMs) are essential for sustaining forest biodiversity. Although TreMs represent ephemeral resources that are spread across the landscape, their spatial distribution within temperate forests remains poorly understood. To address this knowledge gap, we conducted a study on 90 sample plots (0.
View Article and Find Full Text PDFPlants (Basel)
December 2024
CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
Hydraulic functionality is crucial for tree productivity and stress tolerance. According to the theory of the fast-slow economics spectrum, the adaptive strategies of different tree species diverge along a spectrum defined by coordination and trade-offs of a suite of functional traits. The fast- and slow-growing species are expected to differ in hydraulic efficiency and safety; however, there is still a lack of investigation on the mechanistic association between tree growth rate and tree hydraulic functionality.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Forest Resource Planning and Informatics, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 01 Zvolen, Slovak Republic.
Gap dynamics are driving many important processes in the development of temperate forest ecosystems. What remains largely unknown is how often the regeneration processes initialized by endogenous mortality of dominant and co-dominant canopy trees take place. We conducted a study in the high mountain forests of the Central Western Carpathians, naturally dominated by the Norway spruce.
View Article and Find Full Text PDFTree Physiol
January 2025
Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
During drought, the formation of air bubbles known as embolisms in the water-conducting xylem reduces hydraulic conductivity, which can ultimately result in tree death. Accurately quantifying vulnerability to embolism formation is therefore essential for understanding tree hydraulics. Acoustic emission (AE) analysis offers a non-destructive method to monitor this process, yet the interpretation of captured signals remains debated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!