Background: In recent years, researchers have focused on developing precise models for the progression of Alzheimer's disease (AD) using deep neural networks. Forecasting the progression of AD through the analysis of time series data represents a promising approach.
Objective: The primary objective of this research is to formulate an effective methodology for forecasting the progression of AD through the integration of multi-task learning techniques and the analysis of pertinent medical data.
Methods: This study primarily utilized volumetric measurements obtained through magnetic resonance imaging (MRI), trajectories of cognitive assessments, and clinical status indicators. The research encompassed 150 patients diagnosed with AD who underwent examination between 2020 and 2022 in Beijing, China. A multi-task learning approach was employed to train forecasting models using MRI data, trajectories of cognitive assessments, and clinical status. Correlation analysis was conducted at various time points.
Results: At the baseline, a robust correlation was observed among the forecasting tasks: 0.75 for volumetric MRI measurements, 0.62 for trajectories of cognitive assessment, and 0.48 for clinical status. The implementation of a multi-task learning framework enhanced performance by 12.7% for imputing missing values and 14.8% for prediction accuracy.
Conclusions: The findings of our study, indicate that multi-task learning can effectively predict the progression of AD. However, it is important to note that the study's generalizability may be limited due to the restricted dataset and the specific population under examination. These conclusions represent a significant stride toward more precise diagnosis and treatment of this neurological disorder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-240183 | DOI Listing |
Sci Rep
January 2025
School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, JL431, China.
Multimodal sentiment analysis (MSA) aims to use a variety of sensors to obtain and process information to predict the intensity and polarity of human emotions. The main challenges faced by current multi-modal sentiment analysis include: how the model extracts emotional information in a single modality and realizes the complementary transmission of multimodal information; how to output relatively stable predictions even when the sentiment embodied in a single modality is inconsistent with the multi-modal label; how can the model ensure high accuracy when a single modal information is incomplete or the feature extraction performance not good. Traditional methods do not take into account the interaction of unimodal contextual information and multi-modal information.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Mathematics, Central South University of Forestry and Technology, Changsha, 410004, China.
Accurately segmenting remote sensing images remains challenging due to the diverse target scales and ambiguous structural boundaries. In this work, we propose a semi-supervised boundary segmentation network (BS-GAN) to address these challenges. BS-GAN employs a semi-supervised learning approach to reduce dependency on labeled data while introducing a novel mixed attention (MA) mechanism to enhance segmentation accuracy by aggregating long-range contextual information.
View Article and Find Full Text PDFNat Commun
January 2025
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
Neural reuse can drive organisms to generalize knowledge across various tasks during learning. However, existing devices mostly focus on architectures rather than network functions, lacking the mimic capabilities of neural reuse. Here, we demonstrate a rational device designed based on ferroionic CuInPS, to accomplish the neural reuse function, enabled by dynamic allocation of the ferro-ionic phase.
View Article and Find Full Text PDFJ Transl Med
January 2025
School of Information and Communication Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, China.
Background: Parkinson's Disease (PD) is a neurodegenerative disorder, and eye movement abnormalities are a significant symptom of its diagnosis. In this paper, we developed a multi-task driven by eye movement in a virtual reality (VR) environment to elicit PD-specific eye movement abnormalities. The abnormal features were subsequently modeled by using the proposed deep learning algorithm to achieve an auxiliary diagnosis of PD.
View Article and Find Full Text PDFComput Med Imaging Graph
January 2025
The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China. Electronic address:
Parkinson disease (PD) is a prevalent neurodegenerative disorder, and its accurate diagnosis is crucial for timely intervention. We propose the PArkinson disease Denoising and Segmentation Network (PADS-Net), to simultaneously denoise and segment transcranial ultrasound images of midbrain for accurate PD diagnosis. The PADS-Net is built upon generative adversarial networks and incorporates a multi-task deep learning framework aimed at optimizing the tasks of denoising and segmentation for ultrasound images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!