Background: Alzheimer's disease (AD) is the most common sort of neurodegenerative dementia, characterized by its challenging, diverse, and progressive nature. Despite significant progress in neuroscience, the current treatment strategies remain suboptimal.
Objective: Identifying a more accurate molecular target for the involvement of microglia in the pathogenic process of AD and exploring potential mechanisms via which it could influence disease.
Methods: We utilized single-cell RNA sequencing (scRNA-seq) analysis in conjunction with APP/PS1 mouse models to find out the molecular mechanism of AD. With the goal of investigating the cellular heterogeneity of AD, we downloaded the scRNA-seq data from the Gene Expression Omnibus (GEO) database and identified differentially expressed genes (DEGs). Additionally, we evaluated learning and memory capacity using the behavioral experiment. We also examined the expression of proteins associated with memory using western blotting. Immunofluorescence was employed to investigate alterations in amyloid plaques and microglia.
Results: Our findings revealed an upregulation of ITGAX expression in APP/PS1 transgenic mice, which coincided with a downregulation of synaptic plasticity-related proteins, an increase in amyloid-β (Aβ) plaques, and an elevation in the number of M1 microglia. Interestingly, deletion of ITGAX resulted in increased Aβ plaque deposition, a rise in the M1 microglial phenotype, and decreased production of synaptic plasticity-related proteins, all of which contributed to a decline in learning and memory.
Conclusions: This research suggested that ITGAX may have a beneficial impact on the APP/PS1 mice model, as its decreased expression could exacerbate the impairment of synaptic plasticity and worsen cognitive dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-240118 | DOI Listing |
J Am Heart Assoc
January 2025
Research Institute of Internal Medicine, Oslo University Hospital Oslo Norway.
Background: Complement activation may promote atherosclerosis. Yet, data on the to which extent complement, and more specifically the alternative complement pathway, is activated in patients with carotid atherosclerosis and related to adverse outcome in these patients, are scarce.
Methods And Results: We measured, by ELISA, plasma levels of factor D, properdin, C3bBbP (C3 convertase), and factor H in patients with advanced carotid atherosclerosis in a (n=324) and in a (n=206) cohort in relation to adverse outcome (mean follow-up 7.
Transl Neurodegener
January 2025
Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea.
Alzheimer's disease (AD) is the most common type of dementia. Monoclonal antibodies (MABs) serve as a promising therapeutic approach for AD by selectively targeting key pathogenic factors, such as amyloid-β (Aβ) peptide, tau protein, and neuroinflammation. Specifically, based on their efficacy in removing Aβ plaques from the brains of patients with AD, the U.
View Article and Find Full Text PDFBiosci Trends
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, Korea.
Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
January 2025
Department of Biological Sciences, Delaware State University, Dover, DE, United States.
Trans-active response DNA-binding protein-43 (TDP-43) is the major pathological protein in motor neuron disease and TDP-43 pathology has been described in the brains of up to 50% of patients with Alzheimer disease (AD). Hippocampal sclerosis of aging (HS-A), an age-related neuropathology characterized by severe neuronal loss and gliosis in CA1 and/or subiculum, is found in ∼80% of cases that are positive for phosphorylated TDP-43. HS-A is seen as a co-pathology in cases with AD, limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC), and frontotemporal degeneration.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China. Electronic address:
Cigarette smoke (CS), an indoor environmental pollution, is an environmental risk factor for diverse neurological disorders. However, the neurotoxicological effects and mechanisms of CS on Alzheimer's disease (AD) progression remain unclear. We found that CS accelerated the progression of AD, including increasing β-amyloid (Aβ) plaque deposition and exacerbating cognitive decline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!