Background: Traumatic hemorrhagic shock (THS) is a complex pathophysiological process resulting in multiple organ failure. Intestinal barrier dysfunction is one of the mechanisms implicated in multiple organ failure. The present study aimed to explore the regulatory role of mitogen-activated protein kinase kinase 3 (MKK3) in THS-induced intestinal injury and to elucidate its potential mechanism.
Methods: Rats were subjected to trauma and hemorrhage to establish a THS animal model. MKK3-targeted lentiviral vectors were injected via the tail vein 72 h before modeling. Twelve hours post-modeling, the mean arterial pressure (MAP) and heart rate (HR) were monitored, and histological injury to the intestine was assessed via H&E staining and transmission electron microscopy. Mitochondrial function and mitochondrial reactive oxygen species (ROS) were evaluated. IEC-6 cells were exposed to hypoxia to mimic intestinal injury following THS in vitro.
Results: MKK3 deficiency alleviated intestinal injury and restored mitochondrial function in intestinal tissues from THS-induced rats and hypoxia-treated IEC-6 cells. In addition, MKK3 deficiency promoted Sirt1/PGC-1α-mediated mitochondrial biogenesis and restricted Pink1/Parkin-mediated mitophagy in the injured intestine and IEC-6 cells. Furthermore, the protective effect of MKK3 knockdown against hypoxia-induced mitochondrial damage was strengthened upon simultaneous LC3B/Pink1/Parkin knockdown or weakened upon simultaneous Sirt1 knockdown.
Conclusion: MKK3 deficiency protected against intestinal injury induced by THS by promoting mitochondrial biogenesis and restricting excessive mitophagy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-024-09691-3 | DOI Listing |
BMC Vet Res
January 2025
Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Animals infected with mycoplasma pneumoniae not only develop respiratory diseases, but also cause digestive diseases through the lung-gut axis mediated by the intestinal flora, and vice versa. Antimicrobial peptides are characterized by their bactericidal, anti-inflammatory, and intestinal flora-regulating properties. However, the effect of cecropin AD (CAD) against mycoplasma pneumonia remains unclear.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China. Electronic address:
Cr(VI) is widely used in industry and has high toxicity, making it one of the most common environmental pollutants. Long-term exposure to Cr(VI) can cause metabolic disorders and tissue damage. However, the effects of Cr(VI) on liver and gut microbes in fish have rarely been reported.
View Article and Find Full Text PDFPLoS One
January 2025
Marie Curie Research Centre, Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom.
To undertake a mixed-methodology implementation study to improve the well-being of men with gastrointestinal late effects following radical radiotherapy for prostate cancer. All men completed a validated screening tool for late bowel effects (ALERT-B) and the Gastrointestinal Symptom Rating Score (GSRS); men with a positive score on ALERT-B were offered management following a peer reviewed algorithm for pelvic radiation disease (PRD). Health-related quality of life (HRQoL) at baseline, 6 and 12 months; and healthcare resource usage (HRU) and patient, support-giver, staff experience and acceptability of staff training (qualitative analysis) were assessed.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China.
Aflatoxin B1 (AFB1) is a harmful environmental contaminant known to disrupt gut microbiota and cause health problems. In recent years, the role of vitamin B6 (VB6) in maintaining intestinal and reproductive health has attracted much attention. AFB1 has been found to damage the intestinal barrier and cause inflammation by disrupting the intestinal microbiota, particularly by increasing the abundance of .
View Article and Find Full Text PDFMed Sci Sports Exerc
January 2025
Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM.
Purpose: To test the hypothesis that ibuprofen ingestion exacerbates markers of acute kidney injury (AKI), gastrointestinal (GI) injury, and endotoxemia after running in the heat.
Methods: Using a randomized double-blind crossover design, eleven physically active individuals (six women) ingested 600 mg of ibuprofen or placebo 12- and one-hour prior to running one-hour in a heated chamber (35 °C, 20%-60% R.H.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!