Mendelian randomization is an epidemiologic technique that can explore the potential effect of perturbing a pharmacological target. Plasma caffeine levels can be used as a biomarker to measure the pharmacological effects of caffeine. Alternatively, this can be assessed using a behavioral proxy, such as average number of caffeinated drinks consumed per day. Either variable can be used as the exposure in a Mendelian randomization investigation, and to select which genetic variants to use as instrumental variables. Another possibility is to choose variants in gene regions with known biological relevance to caffeine level regulation. These choices affect the causal question that is being addressed by the analysis, and the validity of the analysis assumptions. Further, even when using the same genetic variants, the sign of Mendelian randomization estimates (positive or negative) can change depending on the choice of exposure. Some genetic variants that decrease caffeine metabolism associate with higher levels of plasma caffeine, but lower levels of caffeine consumption, as individuals with these variants require less caffeine consumption for the same physiological effect. We explore Mendelian randomization estimates for the effect of caffeine on body mass index, and discuss implications for variant and exposure choice in drug target Mendelian randomization investigations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616520 | PMC |
http://dx.doi.org/10.1093/aje/kwae143 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
The Cardiology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.
Research evidence has demonstrated a significant association between hypertrophic cardiomyopathy (HCM) and atrial fibrillation (AF), but the causality and pattern of this link remain unexplored. Therefore, this study investigated the causal relationship between HCM and AF using a two-sample and bidirectional Mendelian randomization (MR) approach. Additionally, this assessed the role of cardiovascular proteins (CPs) associated with cardiovascular diseases between HCM and AF by applying a two-step MR analysis.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Epidemiological studies indicate that the involvement of the immune system in the pathogenesis of infections associated with chronic obstructive pulmonary disease (COPD), asthma, and interstitial lung disease (ILD) remains unclear. This study aims to assess the potential causal link between infections associated with COPD, asthma, or ILD and immune system function. We conducted a two-sample Mendelian randomization analysis using publicly available genome-wide association study (GWAS) datasets.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Food and Nutrition, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Republic of Korea.
High-sensitivity C-reactive protein (hs-CRP) is a marker of systemic inflammation and is associated with developing dyslipidemia. However, the causality between hs-CRP and dyslipidemia remains unresolved. This study aimed to investigate the relationship between hs-CRP concentrations and dyslipidemia and to explore the potential causal link using Mendelian randomization (MR) analysis.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Radiation Oncology, The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China.
Radiation-induced skin toxicity, resulting from ionizing or nonionizing radiation, is a common skin disorder. However, the underlying relationship between skin microbiota and radiation-induced skin toxicity remains largely unexplored. Herein, we uncover the microbiota-skin interaction based on a genome-wide association study (GWAS) featuring 150 skin microbiota and three types of skin microenvironment.
View Article and Find Full Text PDFBiomedicines
January 2025
School of Public Health, Wenzhou Medical University, Wenzhou 325035, China.
DNA damage repair (DDR) plays a key role in maintaining genomic stability and developing inflammatory bowel disease (IBD). However, no report about the causal association between DDR and IBD exists. Whether DDR-related genes are the precise causal association to IBD in etiology remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!