Cytotoxicity of phosphoramidate, bis-amidate and cycloSal prodrug metabolites against tumour and normal cells.

RSC Med Chem

Australian Nuclear Science and Technology Organisation Lucas Heights NSW 2234 Australia

Published: June 2024

AI Article Synopsis

  • Phosphonate and phosphate prodrugs are important for improving drug absorption, but their toxic metabolites pose risks that must be addressed.
  • The study specifically looks at how certain metabolite compounds affect pancreatic cancer cells, glioblastoma cells, and mouse astrocytes, finding that 2-naphthol is particularly toxic to these cell types.
  • A clear trend shows that normal cells are generally more vulnerable to the toxic effects of these prodrug metabolites compared to cancer cells, highlighting the need to consider this toxicity during drug development.

Article Abstract

Phosphonate and phosphate prodrugs are integral to enhancing drug permeability, but the potential toxicity of their metabolites requires careful consideration. This study evaluates the impact of widely used phosphoramidate, bis-amidate, and cycloSal phosph(on)ate prodrug metabolites on BxPC3 pancreatic cancer cells, GL261-Luc glioblastoma cells, and primary cultured mouse astrocytes. 1-Naphthol and 2-naphthol demonstrated the greatest toxicity. Notably, 2-naphthol exhibited an ED of 21 μM on BxPC3 cells, surpassing 1-naphthol with an ED of 82 μM. Real-time xCELLigence experiments revealed notable activity for both metabolites at a low concentration of 16 μM. On primary cultured mouse astrocyte cells, all prodrugs exhibited reduced viability at 128 to 256 μM after only 4 hours of exposure. A cell-type-dependent sensitivity to phosph(on)ate prodrug metabolites was evident, with normal cells showing greater susceptibility than corresponding tumour cells. The results suggest it is essential to consider the potential cytotoxicity of phosph(on)ate prodrugs in the drug design and evaluation process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109934PMC
http://dx.doi.org/10.1039/d4md00115jDOI Listing

Publication Analysis

Top Keywords

prodrug metabolites
12
phosphoramidate bis-amidate
8
bis-amidate cyclosal
8
normal cells
8
phosphonate prodrug
8
primary cultured
8
cultured mouse
8
cells
7
metabolites
5
cytotoxicity phosphoramidate
4

Similar Publications

Background And Objective: Psilocybin is currently being extensively studied as a potential therapeutic agent for multiple psychiatric disorders. Here, a systematic literature review of all published pharmacokinetic data on the pharmacologically active metabolite of psilocybin, psilocin, is presented.

Methods: The review includes clinical studies that reported pharmacokinetic data and/or parameters after psilocybin administration in humans.

View Article and Find Full Text PDF

Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.

View Article and Find Full Text PDF

In Vitro Rooting of Poplar: Effects and Metabolism of Dichlorprop Auxin Ester Prodrugs.

Plants (Basel)

January 2025

Laboratory for Applied In Vitro Plant Biotechnology, Ghent University, 9000 Ghent, Belgium.

Efficient adventitious root formation is essential in micropropagation. Auxin prodrugs, inactive precursors that convert into active auxins within the plant, offer potentially improved rooting control and reduced phytotoxicity. This study investigated the efficacy of dichlorprop ester (DCPE), commercialized as Corasil and Clemensgros (originally intended to increase grapefruit size), in promoting in vitro root initiation in the model plant × , compared to its hydrolyzed form DCP and the related compound C77.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia, the most prevalent chronic lung disease of prematurity, is often treated with glucocorticoids (GCs) such as dexamethasone (DEX), but their use is encumbered with several adverse somatic, metabolic, and neurologic effects. We previously reported that systemic delivery of the GC prodrug ciclesonide (CIC) in neonatal rats activated glucocorticoid receptor (GR) transcriptional responses in lung but did not trigger multiple adverse effects caused by DEX. To determine whether limited systemic metabolism of CIC was solely responsible for its enhanced safety profile, we treated neonatal rats with its active metabolite desisobutyryl-ciclesonide (Des-CIC).

View Article and Find Full Text PDF

Functions of nitroreductases in mycobacterial physiology and drug susceptibility.

J Bacteriol

January 2025

Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA.

Tuberculosis is a respiratory infection that is caused by members of the complex, with (Mtb) being the predominant cause of the disease in humans. The approval of pretomanid and delamanid, two nitroimidazole-based compounds, for the treatment of tuberculosis encourages the development of more nitro-containing drugs that target Mtb. Similar to the nitroimidazoles, many antimycobacterial nitro-containing scaffolds are prodrugs that require reductive activation into metabolites that inhibit the growth of the pathogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!