Magnetic order on the spatially anisotropic triangular lattice of is studied via neutron diffraction measurements. The transition into a commensurate, collinear antiferromagnetic ground state with was found to occur below . Above this temperature, the transition is preceded by the formation of a coexisting, short-range ordered, incommensurate state below whose two-dimensional propagation vector evolves toward as the temperature approaches . At high temperatures , quasielastic scattering reveals one-dimensional spin correlations along the nearest-neighbor Mn-Mn "chain direction" of the MnO planes. Our data are consistent with the predictions of a mean-field model of Ising-like spins on an anisotropic triangular lattice, as well as the predominantly one-dimensional Heisenberg spin Hamiltonian reported for this material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187984PMC
http://dx.doi.org/10.1103/PhysRevB.98.144444DOI Listing

Publication Analysis

Top Keywords

anisotropic triangular
12
triangular lattice
12
spin correlations
8
thermal evolution
4
evolution quasi-one-dimensional
4
quasi-one-dimensional spin
4
correlations anisotropic
4
lattice magnetic
4
magnetic order
4
order spatially
4

Similar Publications

Synthesis of anisotropic silica nanoparticles by organic amine with diverse structures.

Nanotechnology

January 2025

School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China.

Herein, we synthesized anisotropic silica nanoparticles (AISNPs) with organic amines with different structures. Monoamines and diamines with distance between amine groups shorter than4 Å have been observed to facilitate the formation of isotropic silica nanoparticles (ISNPs). AISNPs were synthesized with diamines with distance between amine groups longer than4 Å and linear structures of triamines.

View Article and Find Full Text PDF

In the case of waveguide-based devices, once they are fabricated, their optical properties are already determined and cannot be dynamically controlled, which limits their applications in practice. In this paper, an isosceles triangular-coupling structure which consists of an isosceles triangle coupled with a two-bus waveguide is proposed and researched numerically and theoretically. The coupled mode theory (CMT) is introduced to verify the correctness of the simulation results, which are based on the finite difference time domain (FDTD).

View Article and Find Full Text PDF

Chiral Phonons Induced from Spin Dynamics via Magnetoelastic Anisotropy.

Phys Rev Lett

December 2024

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

Article Synopsis
  • The proposed mechanism generates chiral phononlike excitations through magnetoelastic couplings without needing magnetic fields or out-of-plane magnetization.
  • By analyzing a triangular lattice ferromagnet, the research reveals how lattice symmetry influences chirality, linking it to topological phonon classes.
  • The study suggests potential applications in spintronics and phononics, emphasizing the experimental viability of measuring phonon magnetization and thermal Hall conductivity in anisotropic magnets.
View Article and Find Full Text PDF

Lipid Membrane Domains Control Actin Network Viscoelasticity.

Langmuir

December 2024

Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

The mammalian cell membrane is embedded with biomolecular condensates of protein and lipid clusters, which interact with an underlying viscoelastic cytoskeleton network to organize the cell surface and mechanically interact with the extracellular environment. However, the mechanical and thermodynamic interplay between the viscoelastic network and liquid-liquid phase separation of 2-dimensional (2D) lipid condensates remains poorly understood. Here, we engineer materials composed of 2D lipid membrane condensates embedded within a thin viscoelastic actin network.

View Article and Find Full Text PDF

Controlling the growth, structure, and shape of CdS nanocrystals is crucial for harnessing their unique physicochemical properties across diverse applications. This control can be achieved by introducing chemical additives into the synthesis reaction mixture. However, precise manipulation of nanocrystal synthesis necessitates a thorough understanding of the formation mechanisms under various chemical conditions, a task that remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!