Based on the whole virus or spike protein of pigs, δ coronavirus (PDCoV) as an immunogen may have unrelated antigenic epitope interference. Therefore, it is essential for screening and identifying advantageous protective antigen epitopes. In addition, immunoinformatic tools are described as an important aid in determining protective antigenic epitopes. In this study, the primary, secondary, and tertiary structures of vaccines were measured using ExPASy, PSIPRED 4.0, and trRosetta servers. Meanwhile, the molecular docking analysis and vector of the candidate nanovaccine were constructed. The immune response of the candidate vaccine was simulated and predicted using the C-ImmSim server. This experiment screened B cell epitopes with strong immunogenicity and high conservation, CTL epitopes, and Th epitopes with IFN-γ and IL-4 positive spike proteins. Ferritin is used as a self-assembled nanoparticle element for designing candidate nanovaccine. After analysis, it has been found to be soluble, stable, non-allergenic, and has a high affinity for its target receptor, TLR-3. The preliminary simulation analysis results show that the candidate nanovaccine has the ability to induce a humoral and cellular immune response. Therefore, it may provide a new theoretical basis for research on coronavirus self-assembled nanovaccines. It may be an effective candidate vaccine for controlling and preventing PDCoV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186991PMC
http://dx.doi.org/10.3389/fmicb.2024.1402963DOI Listing

Publication Analysis

Top Keywords

candidate nanovaccine
12
immune response
8
candidate vaccine
8
epitopes
5
candidate
5
epitope screening
4
screening self-assembled
4
nanovaccine
4
self-assembled nanovaccine
4
nanovaccine molecule
4

Similar Publications

A self-assembled nanoparticle vaccine elicits effective neutralizing antibody response against EBV infection.

Front Immunol

January 2025

Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

Background: Epstein-Barr virus (EBV) is a significant global public health concern because of its association with various malignancies and autoimmune diseases. Over 90% of the global population is chronically infected with EBV, impacting numerous cancer-related cases annually. However, none of the effective prophylactic vaccines against EBV is approved at present.

View Article and Find Full Text PDF

Nanoparticle Vaccine Triggers Interferon-Gamma Production and Confers Protective Immunity against Porcine Reproductive and Respiratory Syndrome Virus.

ACS Nano

January 2025

Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.

The swine industry annually suffers significant economic losses caused by porcine reproductive and respiratory syndrome virus (PRRSV). Because the available commercial vaccines have limited protective efficacy against epidemic PRRSV, there is an urgent need for innovative solutions. Nanoparticle vaccines induce robust immune responses and have become a promising direction in vaccine development.

View Article and Find Full Text PDF

After more than a century since its initial development, Bacille Calmette-Guérin (BCG) remains the only licensed vaccine against tuberculosis (TB). Subunit boosters are considered a viable strategy to enhance BCG efficacy, which often wanes in adolescence. While many studies on booster subunit vaccines have concentrated on recombinant proteins, here we developed a novel modular peptide-based subunit vaccine platform that is flexible, cold-chain independent and customizable to diverse circumstances and populations.

View Article and Find Full Text PDF

Enhancing protective immunity against SARS-CoV-2 with a self-amplifying RNA lipid nanoparticle vaccine.

J Control Release

December 2024

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China. Electronic address:

RNA-based vaccines against SARS-CoV-2 have demonstrated promising protective immunity against the global COVID-19 epidemic. Enhancing the intensity and duration of mRNA antigen expression is anticipated to markedly boost antiviral immune responses. Self-amplifying RNA (saRNA) represents a next-generation platform for RNA-based vaccines, amplifying transcripts in situ to augment the expression of encoded immunogens.

View Article and Find Full Text PDF

Protein nanoparticle vaccines induce potent neutralizing antibody responses against MERS-CoV.

Cell Rep

December 2024

Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Electronic address:

Middle East respiratory syndrome coronavirus (MERS-CoV) is a betacoronavirus that causes severe respiratory illness in humans. There are no licensed vaccines against MERS-CoV and only a few candidates in phase I clinical trials. Here, we develop MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!