Glycine/alginate-based piezoelectric film consisting of a single, monolithic β-glycine spherulite towards flexible and biodegradable force sensor.

Regen Biomater

MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China.

Published: May 2024

Development of piezoelectric biomaterials with high piezoelectric performance, while possessing excellent flexibility, biocompatibility, and biodegradability still remains a great challenge. Herein, a flexible, biocompatible and biodegradable piezoelectric β-glycine-alginate-glycerol (Gly-Alg-Glycerol) film with excellent and sensing performance was developed. Remarkably, a single, monolithic β-glycine spherulite, instead of more commonly observed multiple spherulites, was formed in alginate matrix, thereby resulting in outstanding piezoelectric property, including high piezoelectric constant (7.2 pC/N) and high piezoelectric sensitivity (1.97 mV/kPa). The Gly-Alg-Glycerol film exhibited superior flexibility, enabling complex shape-shifting, e.g. origami pigeon, 40% tensile strain, and repeated bending and folding deformation without fracture. , the flexible Gly-Alg-Glycerol film sensor could detect subtle pulse signal, sound wave and recognize shear stress applied from different directions. In addition, we have demonstrated that the Gly-Alg-Glycerol film sensor sealed by polylactic acid and beeswax could serve as an sensor to monitor physiological pressure signals such as heartbeat, respiration and muscle movement. Finally, the Gly-Alg-Glycerol film possessed good biocompatibility, supporting the attachment and proliferation of rat mesenchymal stromal cells, and biodegradability, thereby showing great potential as biodegradable piezoelectric biomaterials for biomedical sensing applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187499PMC
http://dx.doi.org/10.1093/rb/rbae047DOI Listing

Publication Analysis

Top Keywords

gly-alg-glycerol film
20
high piezoelectric
12
single monolithic
8
monolithic β-glycine
8
β-glycine spherulite
8
piezoelectric biomaterials
8
biodegradable piezoelectric
8
film sensor
8
piezoelectric
7
film
6

Similar Publications

Glycine/alginate-based piezoelectric film consisting of a single, monolithic β-glycine spherulite towards flexible and biodegradable force sensor.

Regen Biomater

May 2024

MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China.

Development of piezoelectric biomaterials with high piezoelectric performance, while possessing excellent flexibility, biocompatibility, and biodegradability still remains a great challenge. Herein, a flexible, biocompatible and biodegradable piezoelectric β-glycine-alginate-glycerol (Gly-Alg-Glycerol) film with excellent and sensing performance was developed. Remarkably, a single, monolithic β-glycine spherulite, instead of more commonly observed multiple spherulites, was formed in alginate matrix, thereby resulting in outstanding piezoelectric property, including high piezoelectric constant (7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!