Divergent effects of single and combined stress of drought and salinity on the physiological traits and soil properties of saplings.

Front Plant Sci

Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China.

Published: June 2024

Drought and salinity are two abiotic stresses that affect plant productivity. We exposed 2-year-old saplings to single and combined stress of drought and salinity. Subsequently, the responses of physiological traits and soil properties were investigated. Biochemical traits such as leaf and root phytohormone content significantly increased under most stress conditions. Single drought stress resulted in significantly decreased nonstructural carbohydrate (NSC) content in stems and roots, while single salt stress and combined stress resulted in diverse response of NSC content. Xylem water potential of decreased significantly under both single drought and single salt stress, as well as the combined stress. Under the combined stress of drought and severe salt, xylem hydraulic conductivity significantly decreased while NSC content was unaffected, demonstrating that the risk of xylem hydraulic failure may be greater than carbon starvation. The tracheid lumen diameter and the tracheid double wall thickness of root and stem xylem was hardly affected by any stress, except for the stem tracheid lumen diameter, which was significantly increased under the combined stress. Soil ammonium nitrogen, nitrate nitrogen and available potassium content was only significantly affected by single salt stress, while soil available phosphorus content was not affected by any stress. Single drought stress had a stronger effect on the alpha diversity of rhizobacteria communities, and single salt stress had a stronger effect on soil nutrient availability, while combined stress showed relatively limited effect on these soil properties. Regarding physiological traits, responses of saplings under single and combined stress of drought and salt were diverse, and effects of combined stress could not be directly extrapolated from any single stress. Compared to single stress, the effect of combined stress on phytohormone content and hydraulic traits was negative to saplings, while the combined stress offset the negative effects of single drought stress on NSC content. Our study provided more comprehensive information on the response of the physiological traits and soil properties of saplings under single and combined stress of drought and salt, which would be helpful to understand the adapting mechanism of woody plants to abiotic stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187290PMC
http://dx.doi.org/10.3389/fpls.2024.1351438DOI Listing

Publication Analysis

Top Keywords

combined stress
48
stress
25
stress drought
20
single combined
16
physiological traits
16
soil properties
16
single drought
16
nsc content
16
single salt
16
salt stress
16

Similar Publications

Objective: This study aimed to examine the levels of physical activity (PA), sleep, and mental health (MH), specifically depression, anxiety, and stress, among Chinese university students. It also aimed to analyze the influencing factors of MH, providing a theoretical foundation for developing intervention programs to improve college students' mental health.

Methods: A stratified, clustered, and phased sampling method was employed.

View Article and Find Full Text PDF

The transition from secondary school to college or university is a well-known and well-studied risk period for weight and/or fat gain and not meeting the dietary recommendations. Higher education acts as a promising setting to implement nutrition interventions. An important condition for intervention success is that interventions are implemented as intended by the protocol and integrated in the institutional policy.

View Article and Find Full Text PDF

This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.

View Article and Find Full Text PDF

The impact of antioxidant-ciprofloxacin combinations on the evolution of antibiotic resistance in Pseudomonas aeruginosa biofilms.

NPJ Biofilms Microbiomes

December 2024

Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.

The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.

View Article and Find Full Text PDF

Evaluation of diflubenzuron-verapamil combination strategy for eco-safe management of .

Front Physiol

December 2024

Department of Zoology, Acharya Narendra Dev College, University of Delhi, New Delhi, India.

Introduction: , the vector of multiple arboviral diseases, is a prime health concern worldwide. The surge in borne diseases emphasizes the urgent need for efficient vector control measures. Synthetic pesticides used traditionally, however, present environmental concerns and issues like resistance development, causing the use of higher chemical doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!