In this work, various methods were used to improve the printability of a photocurable polyvinylsilazane resin filled with silicon nitride particles for digital light processing. The developed resin was used as a preceramic polymer for polymer-to-ceramic conversion. The pyrolysis-induced structural changes of the additively manufactured objects were evaluated by comparing samples with different thicknesses, filler amounts and heating profiles. The printed green body retained its original geometry better and showed fewer cracks due to the addition of silicon nitride particles to the resin. Based on the thermally induced changes in a polyvinylsilazane resin system, a customized heating profile for the pyrolysis process was developed, which contributed to the reduction of pores and cracks while the average pyrolysis heating rate remained relatively high. This work provides insight into the pyrolysis of additively manufactured preceramic polymer green bodies and highlights various strategies for additive manufacturing of polymer-derived ceramics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188956 | PMC |
http://dx.doi.org/10.1080/14686996.2024.2363170 | DOI Listing |
BMC Psychol
January 2025
School of Education, College of Arts & Science, Universiti Utara Malaysia, Sintok, Malaysia.
Background: In clinical practice, creative arts therapy is frequently utilized for the treatment of traumatized adults, with reports of favorable outcomes. However, the effectiveness of this intervention in post-traumatic stress disorder (PTSD) treatment has not yet been definitively established through meta-analysis. In this meta-analysis, we aim to assess the effectiveness of creative arts therapy in the management of PTSD.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2100 Copenhagen, Denmark. Electronic address:
Additively manufactured drug products, typically produced using small-scale, on-demand batch mode, require rapid and non-destructive quantification methods. A tunable modular design (TMD) approach combining porous polymeric freeze-dried modules and an additive manufacturing method, inkjet printing, was proposed in an earlier study to fabricate accurate and patient-tailored doses of an antidepressant citalopram hydrobromide. This approach addresses the unmet medical needs associated with antidepressant tapering.
View Article and Find Full Text PDFCurr Res Transl Med
December 2024
Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China. Electronic address:
Cancer remains one of the most pressing health challenges worldwide. Recently, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising approach for treating hematological cancers. However, the translation of CAR-T cell therapy to solid tumors faces formidable obstacles, notably the immunosuppressive tumor microenvironment.
View Article and Find Full Text PDFCancer Treat Rev
December 2024
Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy. Electronic address:
Within the expanding therapeutic landscape for breast cancer (BC), metastatic breast cancer (MBC) remains virtually incurable and tend to develop resistance to conventional treatments ultimately leading to metastatic progression and death. Cellular immunotherapy (CI), particularly chimeric antigen receptor-engineered T (CAR-T) cells, has emerged as a promising approach for addressing this challenge. In the wake of their striking efficacy against hematological cancers, CAR-T cells have also been used where the clinical need is greatest - in patients with aggressive BCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!