Influence of SiN fillers and pyrolysis profile on the microstructure of additively manufactured silicon carbonitride ceramics derived from polyvinylsilazane.

Sci Technol Adv Mater

Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technische Universität Berlin, Berlin, Germany.

Published: June 2024

In this work, various methods were used to improve the printability of a photocurable polyvinylsilazane resin filled with silicon nitride particles for digital light processing. The developed resin was used as a preceramic polymer for polymer-to-ceramic conversion. The pyrolysis-induced structural changes of the additively manufactured objects were evaluated by comparing samples with different thicknesses, filler amounts and heating profiles. The printed green body retained its original geometry better and showed fewer cracks due to the addition of silicon nitride particles to the resin. Based on the thermally induced changes in a polyvinylsilazane resin system, a customized heating profile for the pyrolysis process was developed, which contributed to the reduction of pores and cracks while the average pyrolysis heating rate remained relatively high. This work provides insight into the pyrolysis of additively manufactured preceramic polymer green bodies and highlights various strategies for additive manufacturing of polymer-derived ceramics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188956PMC
http://dx.doi.org/10.1080/14686996.2024.2363170DOI Listing

Publication Analysis

Top Keywords

additively manufactured
12
polyvinylsilazane resin
8
silicon nitride
8
nitride particles
8
preceramic polymer
8
influence sin
4
sin fillers
4
pyrolysis
4
fillers pyrolysis
4
pyrolysis profile
4

Similar Publications

Background: In clinical practice, creative arts therapy is frequently utilized for the treatment of traumatized adults, with reports of favorable outcomes. However, the effectiveness of this intervention in post-traumatic stress disorder (PTSD) treatment has not yet been definitively established through meta-analysis. In this meta-analysis, we aim to assess the effectiveness of creative arts therapy in the management of PTSD.

View Article and Find Full Text PDF
Article Synopsis
  • FT596 is a novel cancer therapy using iPSC-derived CAR NK cells targeting CD19, designed to assess its safe dosage and effectiveness alone and with rituximab in patients with B-cell lymphoma.
  • This phase 1 trial involved patients with relapsed or refractory B-cell lymphoma, administering FT596 after chemotherapy, with separate regimens for those receiving rituximab and those who did not.
  • The study measured potential side effects while determining the optimal dose of FT596 and allowed modifications to the treatment based on patient tolerance and response.
View Article and Find Full Text PDF

Additively manufactured drug products, typically produced using small-scale, on-demand batch mode, require rapid and non-destructive quantification methods. A tunable modular design (TMD) approach combining porous polymeric freeze-dried modules and an additive manufacturing method, inkjet printing, was proposed in an earlier study to fabricate accurate and patient-tailored doses of an antidepressant citalopram hydrobromide. This approach addresses the unmet medical needs associated with antidepressant tapering.

View Article and Find Full Text PDF

Optimizing CAR-T cell function in solid tumor microenvironment: insights from culture media additives.

Curr Res Transl Med

December 2024

Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China. Electronic address:

Cancer remains one of the most pressing health challenges worldwide. Recently, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising approach for treating hematological cancers. However, the translation of CAR-T cell therapy to solid tumors faces formidable obstacles, notably the immunosuppressive tumor microenvironment.

View Article and Find Full Text PDF

CAR-T cell therapy for breast cancer: Current status and future perspective.

Cancer Treat Rev

December 2024

Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy. Electronic address:

Within the expanding therapeutic landscape for breast cancer (BC), metastatic breast cancer (MBC) remains virtually incurable and tend to develop resistance to conventional treatments ultimately leading to metastatic progression and death. Cellular immunotherapy (CI), particularly chimeric antigen receptor-engineered T (CAR-T) cells, has emerged as a promising approach for addressing this challenge. In the wake of their striking efficacy against hematological cancers, CAR-T cells have also been used where the clinical need is greatest - in patients with aggressive BCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!