Efficient treatment of wastewater contaminated with carcinogenic Cr(VI) has been a long-term challenge for both academic and industrial research efforts. Removal of Cr(VI) species by ion exchange is a relatively simple and efficient method, and its combination with highly tailorable nanomaterials is promising for the treatment of such wastewater. Here, we report a type of cationic porous organic polymer (POP), namely, PTPA-PIP, which can be prepared simply by converting the corresponding aromatic polyamine PTPA to its protonated form, thereby significantly increasing its hydrophilicity and ability to disperse homogeneously in water, crucial for application in water treatment. In addition to detailed characterization of the physicochemical properties of PTPA-PIP (including using Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and solid-state NMR techniques), adsorption experiments demonstrate that PTPA-PIP removes low-concentration dichromate anions with very high performance, including excellent exchange capacity (maximum capacity of 230 mg CrO /g PTPA-PIP), ultrafast removal (initial adsorption rate of 83 mg g min), excellent selectivity (∼10% loss of adsorption capacity in the presence of 40-fold concentration of competing anions), as well as superior reusability (reusable for at least 5 cycles without compromised performance). These results demonstrate that PTPA-PIP is an outstanding candidate for application in industrial settings for the effective removal of harmful Cr(VI) pollutants in wastewater.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186002PMC
http://dx.doi.org/10.1021/acsapm.4c00658DOI Listing

Publication Analysis

Top Keywords

cationic porous
8
porous organic
8
treatment wastewater
8
demonstrate ptpa-pip
8
ptpa-pip
5
polyaniline-based cationic
4
organic polymers
4
polymers fast
4
fast efficient
4
efficient anion-exchange-driven
4

Similar Publications

ZIF-8-Embedded Cation-Exchange Membranes with Improved Monovalent Ion Selectivity for Capacitive Deionization.

Membranes (Basel)

January 2025

Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.

Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal-organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios.

View Article and Find Full Text PDF

A series of Ni complexes bearing a redox and acid-base noninnocent tetraamido macrocyclic ligand, H-(TAML-4) {H-(TAML-4) = 15,15-dimethyl-5,8,13,17-tetrahydro-5,8,13,17-tetraaza-dibenzo[]cyclotridecene-6,7,14,16-tetraone}, with formal oxidation states of Ni, Ni, and Ni were synthesized and characterized structurally and spectroscopically. The X-ray crystallographic analysis of the Ni complexes revealed a square planar geometry, and the [Ni(TAML-4)] complex with the formal oxidation state of Ni was characterized to be [Ni(TAML-4)] with the oxidation state of the Ni ion and the one-electron oxidized TAML-4 ligand, TAML-4. The Ni oxidation state and the TAML-4 radical cation ligand, TAML-4, were supported by X-ray absorption spectroscopy and density functional theory calculations.

View Article and Find Full Text PDF

2D Nanochannel Interlayer Realizing High-Performance Lithium-Sulfur Batteries.

Adv Mater

January 2025

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and TiCT-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator.

View Article and Find Full Text PDF

The sonochemical synthesis of a chitosan-ZnO/FeO nanocomposite yielded a highly porous structure and large surface area for enhancing the photocatalytic degradation of cationic (rhodamine B, RhB) and anionic (methyl orange, MO) dyes in aqueous solution. Chitosan-ZnO/FeO demonstrated a significant enhancement in photodegradation efficiency 99.49% for MO ( = 5.

View Article and Find Full Text PDF

Poly(triazine imide) (PTI) materials, a class of layered graphitic carbon nitrides, have garnered significant attention for their unique electronic, thermal, and catalytic properties. These properties can be adjusted through postsynthesis treatments. However, the influence of these treatments on the layer stacking modes and local structures within PTI remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!