Declining sequencing costs coupled with the increasing availability of easy-to-use kits for the isolation of DNA and RNA transcripts from single cells have driven a rapid proliferation of studies centered around genomic and transcriptomic data. Simultaneously, a wealth of new techniques have been developed that utilize single cell technologies to interrogate a broad range of cell-biological processes. One recently developed technique, transposase-accessible chromatin with sequencing (ATAC) with select antigen profiling by sequencing (ASAPseq), provides a combination of chromatin accessibility assessments with measurements of cell-surface marker expression levels. While software exists for the characterization of these datasets, there currently exists no tool explicitly designed to reformat ASAP surface marker FASTQ data into a count matrix which can then be used for these downstream analyses. To address this, we created CountASAP, an easy-to-use Python package purposefully designed to transform FASTQ files from ASAP experiments into count matrices compatible with commonly-used downstream bioinformatic analysis packages. CountASAP takes advantage of the independence of the relevant data structures to perform fully parallelized matches of each sequenced read to user-supplied input ASAP oligos and unique cell-identifier sequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188107 | PMC |
http://dx.doi.org/10.1101/2024.05.20.595042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!