Plasmids are extrachromosomal genetic elements commonly found in bacteria. Plasmids are known to fuel bacterial evolution through horizontal gene transfer (HGT), but recent analyses indicate that they can also promote intragenomic adaptations. However, the role of plasmids as catalysts of bacterial evolution beyond HGT remains poorly explored. In this study, we investigate the impact of a widespread conjugative plasmid, pOXA-48, on the evolution of various multidrug-resistant clinical enterobacteria. Combining experimental and within-patient evolution analyses, we unveil that plasmid pOXA-48 promotes bacterial evolution through the transposition of plasmid-encoded insertion sequence 1 (IS1) elements. Specifically, IS1-mediated gene inactivations expedite the adaptation rate of clinical strains in vitro and foster within-patient adaptation in the gut microbiota. We decipher the mechanism underlying the plasmid-mediated surge in IS1 transposition, revealing a negative feedback loop regulated by the genomic copy number of IS1. Given the overrepresentation of IS elements in bacterial plasmids, our findings propose that plasmid-mediated IS transposition represents a crucial mechanism for swift bacterial adaptation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188080 | PMC |
http://dx.doi.org/10.1101/2024.03.01.582297 | DOI Listing |
NPJ Antimicrob Resist
December 2024
Biocomplexity Institute, University of Virginia, Charlottesville, VA USA.
Mobile genetic elements are key to the global emergence of antibiotic resistance. We successfully reconstructed the complete bacterial genome and plasmid assemblies of isolates sharing the same carbapenemase gene to understand evolution over time in six confined hospital drains over five years. From 82 isolates we identified 14 unique strains from 10 species with 113 carrying plasmids across 16 distinct replicon types.
View Article and Find Full Text PDFThe aquifer in the subseafloor igneous basement is a massive, continuous microbial substrate, yet sparingly little is known about life in this habitat. The work to date has focused largely on describing microbial diversity in the young basement (<10 Ma), where the basaltic crust is still porous and fluid flow through it is active. Here, we test the hypothesis that microbial life exists in subseafloor basement >65 Ma using samples collected from the Louisville Seamount Chain via seafloor drilling.
View Article and Find Full Text PDFNature
January 2025
Department of Genetics, University of Cambridge, Cambridge, UK.
The dynamics of the genetic diversity of pathogens, including the emergence of lineages with increased fitness, is a foundational concept of disease ecology with key public-health implications. However, the identification of such lineages and estimation of associated fitness remain challenging, and is rarely done outside densely sampled systems. Here we present phylowave, a scalable approach that summarizes changes in population composition in phylogenetic trees, enabling the automatic detection of lineages based on shared fitness and evolutionary relationships.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
December 2024
Pôle de Microbiologie, Institut Pasteur de Dakar, Sénégal; Faculté de Médecine, Pharmacie et Odontostomatologie, Université Cheikh Anta Diop, Dakar, Sénégal.
Background: Acinetobacter baumannii, particularly carbapenem-resistant strains (CRAB), poses a major concern in the fight against antimicrobial resistance (AMR), identified as a top-priority pathogen by the World Health Organization (WHO). A. baumannii has intrinsic resistance to several antibiotics, including penicillin, cephalosporins, chloramphenicol, and fosfomycin, but the development of AMR has led to the emergence of extremely drug-resistant and pan-resistant isolates.
View Article and Find Full Text PDFInt J Antimicrob Agents
December 2024
University of Amsterdam, Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, Amsterdam, The Netherlands. Electronic address:
Antibiotic resistance is a growing global healthcare challenge, treatment of bacterial infections with fluoroquinolones being no exception. These antibiotics can induce genetic instability through several mechanisms, one of the most significant being the activation of the SOS response. During exposure to sublethal concentration, this stress response increases mutation rates, accelerating resistance evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!