The dynamic crosstalk between tumor and stromal cells is a major determinant of cancer aggressiveness. The tumor-suppressor DAB2IP (Disabled homolog 2 interacting protein) plays an important role in this context, since it modulates cell responses to multiple extracellular inputs, including inflammatory cytokines and growth factors. DAB2IP is a RasGAP and negatively controls Ras-dependent mitogenic signals. In addition, it modulates other major oncogenic pathways, including TNFα/NF-κB, WNT/β-catenin, PI3K/AKT, and androgen receptor signaling. In line with its tumor-suppressive role, DAB2IP is frequently inactivated in cancer by transcriptional and post-transcriptional mechanisms, including promoter methylation, microRNA-mediated downregulation, and protein-protein interactions. Intriguingly, some observations suggest that downregulation of DAB2IP in cells of the tumor stroma could foster establishment of a pro-metastatic microenvironment. This review summarizes recent insights into the tumor-suppressive functions of DAB2IP and the consequences of its inactivation in cancer. In particular, we explore potential approaches aimed at reactivating DAB2IP, or augmenting its expression levels, as a novel strategy in cancer treatment. We suggest that reactivation or upregulation of DAB2IP would concurrently attenuate multiple oncogenic pathways in both cancer cells and the tumor microenvironment, with implications for improved treatment of a broad spectrum of tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239834PMC
http://dx.doi.org/10.1038/s41418-024-01332-3DOI Listing

Publication Analysis

Top Keywords

tumor-suppressive functions
8
dab2ip
8
oncogenic pathways
8
cells tumor
8
cancer
5
update tumor-suppressive
4
functions rasgap
4
rasgap protein
4
protein dab2ip
4
dab2ip focus
4

Similar Publications

Long non-coding RNAs (lncRNAs) have emerged as pivotal regulatory molecules in cancer biology. Among these, long intergenic non-protein coding RNA 02418 (LINC02418), a recently identified lncRNA, has been linked to endometrial cancer (EC), although its function and operational mechanisms are largely unclear. The present investigation aims to elucidate the molecular mechanism through which LINC02418 influences EC pathogenesis.

View Article and Find Full Text PDF

Transforming Bacterial Pathogens into Wonder Tools in Cancer Immunotherapy.

Mol Ther

January 2025

College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea. Electronic address:

Cancer immunotherapy has revolutionized cancer treatment due to its precise, target-specific approach compared to conventional therapies. However, treating solid tumors remains challenging as these tumors are inherently immunosuppressive, and their tumor microenvironment (TME) often limits therapeutic efficacy. Interestingly, certain bacterial species offer a promising alternative by exhibiting an innate ability to target and proliferate within tumor environments.

View Article and Find Full Text PDF

LGR5: An emerging therapeutic target for cancer metastasis and chemotherapy resistance.

Cancer Metastasis Rev

January 2025

Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, 5005, Australia.

Cancer stem cells play an important role in tumor progression and chemotherapy resistance. Leucine-rich G repeat-containing protein-coupled receptor 5 (LGR5) has been identified as a cancer stem cell marker in several cancer types. LGR5 is involved in cancer development and progression via several pathways including WNT/β-catenin signaling pathway.

View Article and Find Full Text PDF

Cordycepin, known for its tumor-suppressive and antiviral properties, has garnered attention due to its therapeutic and biological potential. Current Cordyceps militaris - based cordycepin production methods involve time-consuming and cost-intensive solid-state fermentation. Using an internet of things (IoT) architecture, we developed an active air-feed regulation fermentation system (AAFRFS) to detect CO2 emitted during C.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!