Nanoscale materials are being developed from individual particles to multi-component assemblies, with carbon nanomaterials being particularly useful in bioimaging, sensing, and optoelectronics due to their unique optical properties, enhanced by surface passivation and chemical doping. Noble metals are commonly used in conjunction with carbon-based nanomaterials for the synthesis of nanohybrids. Carbon-based materials can function as photosensitizers and effective carriers in photodynamic therapy, enabling the use of combined treatment approaches. The hydrophobicity and agglomeration tendency of carbon nanoparticles pose a drawback. This study is an attempt to overcome these limitations, which involved the synthesis of iron oxide-doped carbon nanoparticles through the carbonisation of citric acid and hexamethylene tetramine, followed by doping them with iron oxide. The as synthesized iron oxide-doped carbon nanoparticles were stabilised with fluorescently modified hyperbranched polyglycerol. The efficacy of these nanoparticles in photodynamic antibacterial therapy and Cd (II) ion sensing was investigated. The selectivity of stabilised nanoparticles against Cd ion is presented in the current study. The current study also compares the antibacterial efficacy of undoped, iron oxide-doped and stabilised nanoparticle systems. The possible toxic effects of the synthesised nanosystems were investigated in order to assess their suitability for biomedical applications and establish their safety profile.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-024-03769-8DOI Listing

Publication Analysis

Top Keywords

iron oxide-doped
16
carbon nanoparticles
16
oxide-doped carbon
12
nanoparticles stabilised
8
modified hyperbranched
8
hyperbranched polyglycerol
8
photodynamic antibacterial
8
current study
8
nanoparticles
6
iron
5

Similar Publications

A capillary-based microfluidic system designed for nonphotochemical laser-induced nucleation (NPLIN) studies coupled with real-time microscopy was used to study NPLIN of iron (II,III) oxide doped aqueous KCl solutions. Supersaturation was achieved by lowering the solution temperature using thermoelectric cooling, and heating was used for the dissolution of crystals downstream to prevent clogging during the flow. The effect of nanoparticle concentration, supersaturation, laser intensity, and filtration was studied.

View Article and Find Full Text PDF

Despite efforts to reduce the risk of toxic chemicals, colors, and dyes being released into the environment from urban and industrial areas, there is still cause for concern. Colored water must be filtered and sterilized before it can be used for irrigation. The utilization of metal oxide and nanocomposite materials in wastewater treatment procedures appears to be a viable option for the future.

View Article and Find Full Text PDF

Construction of Ferric-Oxide-Doped Nickel-Iron Hydroxide Electrocatalysts by Magnetic-Field-Assisted Chemical Corrosion toward Boosted Oxygen Evolution Reaction.

Molecules

July 2024

Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China.

Transition-metal-based oxygen evolution reaction (OER) catalysts have attracted widespread attention due to their inexpensive prices, unique layered structures, and rich active sites. Currently, designing low-cost, sustainable, and simple synthesis methods is essential for the application of transition-metal-based catalysts. Here, magnetic field (MF)-assisted chemical corrosion, as a novel technology, is adopted to construct superior OER electrocatalysts.

View Article and Find Full Text PDF

Nanoscale materials are being developed from individual particles to multi-component assemblies, with carbon nanomaterials being particularly useful in bioimaging, sensing, and optoelectronics due to their unique optical properties, enhanced by surface passivation and chemical doping. Noble metals are commonly used in conjunction with carbon-based nanomaterials for the synthesis of nanohybrids. Carbon-based materials can function as photosensitizers and effective carriers in photodynamic therapy, enabling the use of combined treatment approaches.

View Article and Find Full Text PDF
Article Synopsis
  • Ascorbic acid is essential for the body, promoting collagen health, but its imbalance can lead to diseases like scurvy and cardiovascular issues.
  • A new biosensor using iron-doped hydroxyapatite was developed for cost-effective, real-time colorimetric detection of ascorbic acid, taking advantage of the material's large surface area and catalytic properties.
  • The sensor shows a linear detection range from 0.6 to 56 μM with rapid response time (75 seconds) and can measure ascorbic acid levels in physiological solutions effectively.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!