Genetic influence of meningioma on cisplatin resistance: a Mendelian randomization analysis.

Int J Clin Pharm

Department of Pharmacy, Beijing Tiantan Hospital Affiliated to Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.

Published: October 2024

Background: Although various aspects of cisplatin resistance have been studied, the impact of genetic variations still needs to be explored.

Aim: This study aimed to investigate the impact of cisplatin on meningiomas using a two-sample Mendelian randomization (MR) approach, employing genetic variants associated with cisplatin use as instrumental variables.

Method: We conducted a two-sample MR analysis using genome-wide association study (GWAS) data. Instrumental variables were derived from single-nucleotide polymorphisms (SNPs) associated with meningioma to estimate the causal relationship with cisplatin resistance. Sensitivity analyses were performed to confirm the findings.

Results: Genetic predisposition to meningioma significantly increased the risk of cisplatin resistance (odds ratio (OR): 1.63; 95% confidence interval (CI) 1.44-1.85, P < 0.05). Sensitivity analyses supported the causal link.

Conclusion: This MR study suggests that genetic predisposition to meningioma increases susceptibility to cisplatin resistance. Further research is needed to uncover the mechanisms behind these causal effects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11096-024-01762-6DOI Listing

Publication Analysis

Top Keywords

cisplatin resistance
16
mendelian randomization
8
cisplatin
6
genetic
4
genetic influence
4
influence meningioma
4
meningioma cisplatin
4
resistance
4
resistance mendelian
4
randomization analysis
4

Similar Publications

Ovarian cancer is one of the deadliest gynecologic cancers affecting the female reproductive tract. This is largely attributed to frequent recurrence and development of resistance to the platinum-based drugs cisplatin and carboplatin. One of the major contributing factors to increased cancer progression and resistance to chemotherapy is the tumor microenvironment (TME).

View Article and Find Full Text PDF

Mutations in the mitochondrial (mt) genome contribute to metabolic dysfunction and their accumulation relates to disease progression and resistance development in cancer cells. This study explores the mutational status of the mt genome of cisplatin-resistant -sensitive testicular germ cell tumor (TGCT) cells and explores its association with their respiration parameters, expression of respiratory genes, and preferences for metabolic pathways to reveal new markers of therapy resistance in TGCTs. Using Illumina sequencing with Twist Enrichment Panel, the mutations of mt genomes of sensitive 2102EP, H12.

View Article and Find Full Text PDF

Biarsenical-based fluorescent labeling of metallothioneins as a method for ultrasensitive quantification of poly-Cys targets.

Anal Chim Acta

February 2025

Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland. Electronic address:

Background: Mammalian metallothioneins (MTs) play a crucial role in maintaining Zn(II) and Cu(I) homeostasis, as well as regulating the cellular redox potential. They are involved in cancer resistance to cisplatin-related drugs and the sequestration of toxic metal ions. To investigate their participation in specific physiological and pathological processes, it is imperative to develop an analytical method for measuring changes in protein concentration both in vitro and in vivo.

View Article and Find Full Text PDF

[Impacts of curcumin on proliferation, migration and cisplatin resistance of bladder cancer cells by regulating LKB1-AMPK-LC3 signaling pathway].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

National Key Laboratory of Bioreactors, School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, China. *Corresponding author, E-mail:

Article Synopsis
  • The study investigates how curcumin affects bladder cancer cells regarding growth, movement, and resistance to cisplatin (a chemotherapy drug) by targeting a specific signaling pathway (LKB1-AMPK-LC3).
  • Human bladder cancer cells (T24) and their cisplatin-resistant counterparts (T24/DDP) were treated with varying concentrations of curcumin, and various assays measured cell proliferation, migration, autophagy, and apoptosis.
  • Results showed that curcumin, especially when combined with metformin, influences these cellular functions and could reduce drug resistance, affecting the expression of proteins in the targeted signaling pathway.
View Article and Find Full Text PDF

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!