Non-precious electrocatalysts as the alternative to Pt have become a hot research area in the last decade due to the suitable catalytic activity in Oxygen reduction reaction (ORR) in electrochemical systems. In this work, the density functional theory calculations were investigated to explore the activity of Fe, Cu, and Fe-Cu atoms supported by N-doped graphene as the ORR electrocatalyst for Oxygen-depolarized cathodes (ODCs). To this end, the ORR mechanism was surveyed in detail in the gas and solvent phases. The results show that the solvent phase leads to a higher overpotential and thermodynamic limiting potential. According to the density of states curves, there are strong interactions between metal atom and substrate that can effectively tune the electronics of catalysts. Bader's analysis confirms that, in addition to the single metal atoms, nitrogen atoms have also played a critical role in charge transfer between substrates and oxygen molecules in ORR. It is also predicted that Fe-Cu@NC SAC exhibits the highest catalytic activity which is consistent with thermodynamic limiting potential and theoretical overpotential of - 0.26 and 0.66 (V vs. SHE), respectively, indicating that this type of catalyst may be a suitable candidate instead of precious metals in oxygen-depolarized cathodes in electrochemical devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637109 | PMC |
http://dx.doi.org/10.1038/s41598-024-61223-y | DOI Listing |
ACS Nano
January 2025
Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe 76131, Germany.
Atomically precise clusters such as [Pt(CO)(PPh)] ( = 1,2) (PPh is triphenylphosphine) are known as precursors for making oxidation catalysts. However, the changes occurring to the cluster upon thermal activation during the formation of the active catalyst are poorly understood. We have used a combination of hybrid mass spectrometry and surface science to map the thermal decomposition of [Pt(CO)(PPh)](NO).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan.
The effective elimination of NO from automobile exhaust at low temperatures poses significant challenges. Compared to other materials, supported RhO catalysts exhibit high NO decomposition activities, even in the presence of O, CO, and HO. Metal additives can enhance the low-temperature NO decomposition activities over supported RhO catalysts; however, the enhancement mechanism and active sites require further investigation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, American University of Beirut, Beirut, 110236, Lebanon.
Enhancing the rate of the oxygen evolution reaction (OER) by doping Ni-based electrocatalysts with guest metals other than Fe (V in this work) and the stability of the metal site should be assessed independent of Fe traces and in relation to the guest metal activity in solution. We examined OER catalysis and its sustainability at vanadium-doped nickel phosphide (NiP-V) independent of the role of Fe traces in alkaline. V was included in NiP by codeposition at cathodic bias (termed V) or postdeposition during the phosphide-to-hydroxide surface transformation at anodic bias in alkaline spiked with VCl (termed V).
View Article and Find Full Text PDFSci Adv
January 2025
School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Metal single atoms are of increasing importance in catalytic reactions. However, the mass diffusion is yet substantially limited by the confined surface of the support in comparison to homogeneous catalysis. Here, we demonstrate that cylindrical micellar brushes with highly solvated poly(2-vinylpyridine) coronas can immobilize 33 types of metal single atoms with 8.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
Geranylgeranyl pyrophosphate synthase (GGPPS), a key enzyme in protein prenylation, plays a critical role in cellular signal transduction and is a promising target for cancer therapy. However, the enzyme's native hexameric quaternary structure presents challenges for crystallographic studies. The primary objective of this study was to engineer dimeric forms of human GGPPS to facilitate high-resolution crystallographic analysis of its ligand binding interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!