A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Atmospheric oxygenation as a potential trigger for climate cooling. | LitMetric

Atmospheric oxygenation as a potential trigger for climate cooling.

Sci Bull (Beijing)

School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China. Electronic address:

Published: December 2024

Secular changes in atmospheric CO and consequent global climate variations, are commonly attributed to global outgassing and the efficiency of silicate weathering, which may have been linked to mountain formation, land/arc distribution, and plant colonization through geological time. Although oxidative weathering has been shown to exert a significant role in the propagation of weathering fronts through the oxidation of Fe-bearing minerals, the influence of atmospheric O concentration (pO) on silicate weathering, CO consumption, and global climate has not been thoroughly evaluated. This study presents a numerical model aimed at estimating the effects of pO on the climate, considering the influence of pO on the regolith thickness and thus weathering duration of granitic domains. Our model simulations reveal that an increase in weathering efficiency, through deeper penetration of the oxidative weathering front in the granitic regolith, would independently introduce a steady-state climate cooling of up to ∼8 °C, in step with one-order of magnitude rise in pO. This temperature change may have repeatedly initiated the runaway ice-albedo feedback, leading to global glacial events (e.g., Neoproterozoic Snowball Earth). Increasing granitic weathering efficiency caused by a substantial pO increase may also have contributed to the development of icehouse climate during the Phanerozoic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2024.05.006DOI Listing

Publication Analysis

Top Keywords

climate cooling
8
global climate
8
weathering
8
silicate weathering
8
oxidative weathering
8
weathering efficiency
8
climate
6
atmospheric oxygenation
4
oxygenation potential
4
potential trigger
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!