T1-Weighted Imaging-Based Hippocampal Radiomics in the Diagnosis of Alzheimer's Disease.

Acad Radiol

Department of Medical Imaging, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China (T.T.Y., J.C.Y., T.Y.S., X.H.M., X.Y.W., Z.Z.J.). Electronic address:

Published: December 2024

Rationale And Objectives: To investigate the potential of T1-weighted imaging (T1WI)-based hippocampal radiomics as imaging markers for the diagnosis of Alzheimer's disease (AD) and their efficacy in discriminating between mild cognitive impairment (MCI) and dementia in AD.

Methods: A total of 126 AD patients underwent T1WI-based magnetic resonance imaging (MRI) examinations, along with 108 age-sex-matched healthy controls (HC). This was a retrospective, single-center study conducted from November 2021 to February 2023. AD patients were categorized into two groups based on disease progression and cognitive function: AD-MCI and dementia (AD-D). T1WI-based radiomics features of the bilateral hippocampi were extracted. To diagnose AD and differentiate between AD-MCI and AD-D, predictive models were developed using random forest (RF), logistic regression (LR), and support vector machine (SVM). We compared radiomics features between the AD and HC groups, as well as within the subgroups of AD-MCI and AD-D. Area under the curve (AUC), accuracy, sensitivity, and specificity were all used to assess model performance. Furthermore, correlations between radiomics features and Mini-Mental State Examination (MMSE) scores, tau protein phosphorylated at threonine 181 (P-tau-181), and amyloid β peptide1-42 (Aβ1-42) were analyzed.

Results: The RF model demonstrated superior performance in distinguishing AD from HC (AUC=0.961, accuracy=90.8%, sensitivity=90.7%, specificity=90.9%) and in identifying AD-MCI and AD-D (AUC=0.875, accuracy=80.7%, sensitivity=87.2%, specificity=73.2%) compared to the other models. Additionally, radiomics features were correlated with MMSE scores, P-tau-181, and Aβ1-42 levels in AD.

Conclusion: T1WI-based hippocampal radiomics features are valuable for diagnosing AD and identifying AD-MCI and AD-D.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2024.06.012DOI Listing

Publication Analysis

Top Keywords

radiomics features
20
ad-mci ad-d
16
hippocampal radiomics
12
diagnosis alzheimer's
8
alzheimer's disease
8
t1wi-based hippocampal
8
mmse scores
8
identifying ad-mci
8
radiomics
7
ad-mci
5

Similar Publications

Objective: To establish and validate a model based on hyperdense middle cerebral artery sign (HMCAS) radiomics features for predicting hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) after endovascular treatment (EVT).

Methods: Patients with AIS who presented with HMCAS on non-contrast computed tomography (NCCT) at admission and underwent EVT at three comprehensive hospitals between June 2020 and January 2024 were recruited for this retrospective study. A radiomics model was constructed using the HMCAS radiomics features most strongly associated with HT.

View Article and Find Full Text PDF

Habitat-based MRI radiomics to predict the origin of brain metastasis.

Med Phys

January 2025

Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China.

Background: This study aims to explore the value of habitat-based magnetic resonance imaging (MRI) radiomics for predicting the origin of brain metastasis (BM).

Purpose: To investigate whether habitat-based radiomics can identify the metastatic tumor type of BM and whether an imaging-based model that integrates the volume of peritumoral edema (VPE) can enhance predictive performance.

Methods: A primary cohort was developed with 384 patients from two centers, which comprises 734 BM lesions.

View Article and Find Full Text PDF

Radiomics and Artificial Intelligence in Pulmonary Fibrosis.

J Imaging Inform Med

January 2025

Laboratory of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.

A scoping review was conducted to investigate the role of radiological imaging, particularly high-resolution computed tomography (HRCT), and artificial intelligence (AI) in diagnosing and prognosticating idiopathic pulmonary fibrosis (IPF). Relevant studies from the PubMed database were selected based on predefined inclusion and exclusion criteria. Two reviewers assessed study quality and analyzed data, estimating heterogeneity and publication bias.

View Article and Find Full Text PDF

Preoperative Computed Tomography Radiomics-Based Models for Predicting Microvascular Invasion of Intrahepatic Mass-Forming Cholangiocarcinoma.

J Comput Assist Tomogr

November 2024

From the Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China.

Objectives: The aim of the study is to investigate the ability of preoperative CT (Computed Tomography)-based radiomics signature to predict microvascular invasion (MVI) of intrahepatic mass-forming cholangiocarcinoma (IMCC) and develop radiomics-based prediction models.

Materials And Methods: Preoperative clinical data, basic CT features, and radiomics features of 121 IMCC patients (44 with MVI and 77 without MVI) were retrospectively reviewed. The loading and display of CT images, delineation of the volume of interest, and feature extraction were performed using 3D Slicer.

View Article and Find Full Text PDF

Background: The expression level of Ki-67 in nasopharyngeal carcinoma (NPC) affects the prognosis and treatment options of patients. Our study developed and validated an MRI-based radiomics nomogram for preoperative evaluation of Ki-67 expression levels in nasopharyngeal carcinoma (NPC).

Methods: In all, 133 patients with pathologically-confirmed (post-operatively) NPC who underwent MRI examination in one of two medical centers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!