New Mechanisms Underlying Oncogenesis in Dbl Family Rho Guanine Nucleotide Exchange Factors.

Mol Pharmacol

Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana

Published: August 2024

Transmembrane signaling is a critical process by which changes in the extracellular environment are relayed to intracellular systems that induce changes in homeostasis. One family of intracellular systems are the guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GTP for GDP bound to inactive guanine nucleotide binding proteins (G proteins). The resulting active G proteins then interact with downstream targets that control cell proliferation, growth, shape, migration, adhesion, and transcription. Dysregulation of any of these processes is a hallmark of cancer. The Dbl family of GEFs activates Rho family G proteins, which, in turn, alter the actin cytoskeleton and promote gene transcription. Although they have a common catalytic mechanism exercised by their highly conserved Dbl homology (DH) domains, Dbl GEFs are regulated in diverse ways, often involving the release of autoinhibition imposed by accessory domains. Among these domains, the pleckstrin homology (PH) domain is the most commonly observed and found immediately C-terminal to the DH domain. The domain has been associated with both positive and negative regulation. Recently, some atomic structures of Dbl GEFs have been determined that reemphasize the complex and central role that the PH domain can play in orchestrating regulation of the DH domain. Here, we discuss these newer structures, put them into context by cataloging the various ways that PH domains are known to contribute to signaling across the Dbl family, and discuss how the PH domain might be exploited to achieve selective inhibition of Dbl family RhoGEFs by small-molecule therapeutics. SIGNIFICANCE STATEMENT: Dysregulation via overexpression or mutation of Dbl family Rho guanine nucleotide exchange factors (GEFs) contributes to cancer and neurodegeneration. Targeting the Dbl homology catalytic domain by small-molecule therapeutics has been challenging due to its high conservation and the lack of a discrete binding pocket. By evaluating some new autoinhibitory mechanisms in the Dbl family, we demonstrate the great diversity of roles played by the regulatory domains, in particular the PH domain, and how this holds tremendous potential for the development of selective therapeutics that modulate GEF activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331503PMC
http://dx.doi.org/10.1124/molpharm.124.000904DOI Listing

Publication Analysis

Top Keywords

dbl family
24
guanine nucleotide
16
nucleotide exchange
12
exchange factors
12
dbl
10
family
8
family rho
8
rho guanine
8
intracellular systems
8
factors gefs
8

Similar Publications

Roles of the Dbl family of RhoGEFs in mechanotransduction - a review.

Front Cell Dev Biol

October 2024

Department of Molecular and Chemical Life Sciences, Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan.

Rho guanine nucleotide exchange factors (RhoGEFs) comprise a wide range of proteins with a common domain responsible for the activation of the Rho family of small GTPases and various domains in other regions. The evolutionary divergence of RhoGEFs enables actin cytoskeletal reorganization, leading to complex cellular responses in higher organisms. In this review, we address the involvement of RhoGEFs in the mechanical stress response of mammalian cells.

View Article and Find Full Text PDF

Understanding P-Rex regulation: structural breakthroughs and emerging perspectives.

Biochem Soc Trans

August 2024

Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia.

Rho GTPases are a family of highly conserved G proteins that regulate numerous cellular processes, including cytoskeleton organisation, migration, and proliferation. The 20 canonical Rho GTPases are regulated by ∼85 guanine nucleotide exchange factors (GEFs), with the largest family being the 71 Diffuse B-cell Lymphoma (Dbl) GEFs. Dbl GEFs promote GTPase activity through the highly conserved Dbl homology domain.

View Article and Find Full Text PDF

Natural genetic diversity of the DBL domain of a novel member of the Plasmodium vivax erythrocyte binding-like proteins (EBP2) in the Amazon rainforest.

Infect Genet Evol

September 2024

Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil. Electronic address:

In malaria parasites, the erythrocyte binding-like proteins (EBL) are a family of invasion proteins that are attractive vaccine targets. In the case of Plasmodium vivax, the widespread malaria parasite, blood-stage vaccines have been largely focused on a single EBL candidate, the Duffy binding-like domain (DBL) of the Duffy binding protein (DBPII), due to its well-characterized role in the reticulocyte invasion. A novel P.

View Article and Find Full Text PDF

New Mechanisms Underlying Oncogenesis in Dbl Family Rho Guanine Nucleotide Exchange Factors.

Mol Pharmacol

August 2024

Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana

Transmembrane signaling is a critical process by which changes in the extracellular environment are relayed to intracellular systems that induce changes in homeostasis. One family of intracellular systems are the guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GTP for GDP bound to inactive guanine nucleotide binding proteins (G proteins). The resulting active G proteins then interact with downstream targets that control cell proliferation, growth, shape, migration, adhesion, and transcription.

View Article and Find Full Text PDF

Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the Transforming Growth Factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!