Biomonitoring studies have shown that pregnant women living in regions of unconventional natural gas (UNG) exploitation have higher levels of trace elements. Whether developmental endocrine disruption can be expected at these exposure levels during pregnancy is unclear. In this study, we aimed to test the impact of five trace elements alone or in mixtures using in vitro cell- and tissue-based assays relevant to endocrine disruption and development. Manganese, aluminum, strontium, barium, and cobalt were tested at concentrations including those representatives of human fetal exposure. Using transactivation assays, none of the tested elements nor their mixture altered the human estrogen receptor 1 or androgen receptor genomic signalling. In the rat fetal testis assay, an organ culture system, cobalt (5 μg/l), barium (500 μg/l) and strontium (500 μg/l) significantly increased testosterone secretion. Cobalt and strontium were associated with hyperplasia and/or hypertrophy of fetal Leydig cells. Mixing the five elements at concentrations where none had an effect individually stimulated testosterone secretion by the rat fetal testis paralleled by the significant increase of 3β-hydroxysteroid dehydrogenase protein level in comparison to the vehicle control. The mechanisms involved may be specific to the fetal testis as no effect was observed in the steroidogenic H295R cells. Our data suggest that some trace elements in mixture at concentrations representative of human fetal exposure can impact testis development and function. This study highlights the potential risk posed by UNG operations, especially for the most vulnerable populations, pregnant individuals, and their fetus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.124393 | DOI Listing |
Joint Bone Spine
December 2024
Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China. Electronic address:
Objective: This study aimed to investigate the associations of multi-omics polygenic risk score (PRS) and rheumatoid arthritis (RA) to identify potential genes/proteins and biological pathways.
Methods: Based on multi-omics data from 48,813 participants in the INTERVAL cohort, we calculated multi-omics PRS for 13,646 mRNAs (RNASeq), 308 proteins (Olink), 2,380 proteins (SomaScan), 726 metabolites (Metabolon), and 141 metabolites (Nightingale). Using the generalized linear model, we first evaluated the associations between multi-omics PRS and RA in 58,813 UK Biobank participants.
Autism Res
December 2024
School of Public Health, Hubei University of Medicine, Shiyan, China.
Imbalances in several trace elements related to antioxidant function may lead to autism spectrum disorder (ASD)-related physiological dysfunction. Nonetheless, contradictory results have been found on the connection between these elements and ASD, and studies of their joint effects and interactions have been insufficient. We therefore designed a case-control study of 152 ASD children and 152 age- and sex-matched typically developing (TD) children to explore the individual and combined associations of manganese (Mn), zinc (Zn), copper (Cu), and selenium (Se) with ASD.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.
Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.
View Article and Find Full Text PDFJ Egypt Natl Canc Inst
December 2024
Department of Community Medicine, Vinayaka Mission's Homoeopathic Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Salem, India.
Green synthesis techniques have drawn a lot of interest lately since they are beneficial to the environment and have potential uses in a variety of industries, including biomedicine. Because of their special physicochemical characteristics, copper nanoparticles (CuNPs) have become one of the most interesting options for use in biological applications among nanomaterials. An overview of green synthesis methods for CuNPs is given in this review, along with a discussion of their applications in cancer therapeutics.
View Article and Find Full Text PDFMikrochim Acta
December 2024
School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
A novel proposal is introduced with an unlabeled electrochemical immunosensor for the detection of tumor broad-spectrum biomarker vascular endothelial growth factor (VEGF165) Copper-based metal organic frameworks (Cu MOFs)-carbon nanotubes (MWCNTs) were employed as its substrates, functionalized with methylene blue (MB) for signal enhancement. Cu-MOFs-MWCNTs nanocomposites were synthesized successfully via a solvothermal method and were then deposited on the surface of a glassy carbon electrode (GCE), with the addition of methylene blue to amplify the signal. Due to the expansive specific surface area provided by the carbon nanotubes and the amino groups facilitated by the metal-organic framework nanomaterials, the anti-VEGF165 monoclonal antibody was immobilized on the electrochemical immunosensor through covalent bonding, which could bind specifically to VEGF165, thereby causing a detectable change in the current.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!