Anesthesia is often required during magnetic resonance imaging (MRI) examinations in animal studies. Anesthetic drugs differ in their capacity to interfere with homeostatic mechanisms responsible for glucose metabolism in the brain, which may create a constraint in the study design. Recent studies suggest that the chemical exchange saturation transfer (CEST) MRI scanning technique can detect localized metabolic changes in rodent brains induced by the uptake of glucose or its analogs; however, most of these studies do not account for the impact of anesthesia type on the brain metabolism. Herein, we aimed to evaluate the effect of reduced isoflurane levels on the preclinical imaging of glucosamine (GlcN) uptake in healthy mouse brains to establish optimal conditions for future brain imaging studies using the CEST MRI technique. The commonly used anesthesia protocol for longitudinal MRI examinations using 1.5% isoflurane level was compared to that using a mixture of low isoflurane (0.8%) level combined with midazolam (2 mg/kg, SC). Magnetization transfer ratio asymmetry (MTRasym) and area under the curve (AUC) analyses were used to characterize GlcN signals in the brain. The results indicated that mice injected with GlcN and anesthetized with 1.5% isoflurane exhibited low and insignificant changes in the MTRasym and AUC signals in the frontal cortex, whereas mice administered with 0.8% isoflurane combined with midazolam demonstrated a significant increase in these signals in the frontal cortex. This study highlights the diverse GlcN metabolic changes observed in mouse brains under variable levels of isoflurane anesthesia using the CEST MRI method. The results suggest that it is feasible to maintain anesthesia with low-dose isoflurane by integrating midazolam, which may enable the investigation of GlcN uptake in the brain. Thus, reducing isoflurane levels may support studies into mouse brain metabolism using the CEST MRI method and should be considered in future studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2024.120691 | DOI Listing |
Quant Imaging Med Surg
January 2025
Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Background: Brain temperature signifies the thermal homeostasis of the tissue, and may serve as a marker for neuroprotective therapy. Currently, it remains challenging to map the human brain temperature with high spatial resolution. The thermal dependence of chemical exchange saturation transfer (CEST) effects of endogenous labile protons may provide a promising mechanism for the absolute brain temperature imaging.
View Article and Find Full Text PDFChemphyschem
January 2025
Deutsches Krebsforschungszentrum, Translational Molecular Imaging, Im Neuenheimer Feld 223, 69120, Heidelberg, GERMANY.
Chemical exchange saturation transfer (CEST) improves the sensitivity of NMR but depending on the spin exchange kinetics, it can require substantial RF energy deposition to label magnetization. Potential side effects like RF-induced heating may occur and must be monitored. Here, we explore the parameter space considering not only undesired heating but efficient CEST build-up (depolarization rate), spectral resolution (line width), and subsequent effects like changes in chemical shifts of CEST responses must be considered, too.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.
Purpose: To develop and evaluate a physics-driven, saturation contrast-aware, deep-learning-based framework for motion artifact correction in CEST MRI.
Methods: A neural network was designed to correct motion artifacts directly from a Z-spectrum frequency (Ω) domain rather than an image spatial domain. Motion artifacts were simulated by modeling 3D rigid-body motion and readout-related motion during k-space sampling.
Magn Reson Med
January 2025
Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
Purpose: The aim of this study was to create a user-friendly CEST simulation tool with a GUI for both spectral (1D Z-spectra) and spatial (2D phantom) CEST experiments, making the CEST simulation easier to perform.
Methods: CESTsimu was developed using MATLAB App Designer. It consists of three modules: Saturation Settings, Exchange Settings, and Phantom Settings.
Magn Reson Med
January 2025
Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Purpose: To optimize a 100 ms pulse for producing CEST MRI contrast and evaluate in mice.
Methods: A gradient ascent algorithm was employed to generate a family of 100 point, 100 ms pulses for use in CEST pulse trains (proton resonance enhancement for CEST imaging and shift exchange). Gradient ascent optimizations were performed for exchange rates = 500, 1500, 2500, 3500, and 4500 s; and labile proton offsets (Δω) = 9.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!