The fate of sulfur (S) was controlled by a complex interaction of abiotic and microbial reactions in constructed wetlands (CWs). Although zero-valent iron (ZVI) was generally considered to promote nitrogen (N) and S cycle by providing electrons, but its binding effect on sulfate (SO-S) removal with the rhizosphere oscillating redox conditions had not been determined. This study found that the presence of plants increased SOS removal in Con-CW, while decreased it by 3.93 % in ZVI-CW accompanied by the decrease of S content in the rhizosphere substrates. The enrichment of S oxidation genes (soxA/Y and yedZ), organic S decomposition genes (aslA) and plants radial oxygen loss (ROL) accelerated the transformation of solid-phase S to SO-S, resulting in ZVI-CW turn from S sink to S source. Overall, the source-sink transformation provided a theoretical guidance for comprehending S cycling in CWs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131010 | DOI Listing |
Plants (Basel)
January 2025
Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
In constructed wetlands (CWs) with multiple plant communities, population structure may change over time and these variations may ultimately influence water quality. However, in CWs with multiple plant communities, it is still unclear how population structure may change over time and how these variations ultimately influence water quality. Here, we established a CW featuring multiple plant species within a polder to investigate the variation in plant population structure and wastewater treatment effect for drainage water over the course of one year.
View Article and Find Full Text PDFMicroorganisms
January 2025
Institute of Natural Resources and Ecology, Heilongjiang Academy of Science, Harbin 150040, China.
Increasing nitrogen (N) addition induces soil nutrient imbalances and is recognized as a major regulator of soil microbial communities. However, how soil bacterial abundance, diversity, and community composition respond to exogenous N addition in nutrient-poor and generally N-limited regions remains understudied. In this study, we investigated the effects of short-term exogenous N additions on soil bacterial communities using quantitative polymerase chain reaction (PCR) and Illumina Miseq sequencing in an in situ N addition field experiment.
View Article and Find Full Text PDFWater Res
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. Electronic address:
Iron-based constructed wetlands (ICWs) displayed great potential in deep nitrogen elimination for low-polluted wastewater. However, the unsatisfactory denitrification performance caused by the limited solubility and sluggish activity of iron substrates needs to be improved in an eco-effective manner. To fill this gap, the bioavailability of iron substrates (iron scraps) affected by wetland biomass-derived carbon materials with potential conductivity were explored.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, 15773, Athens, Greece.
Vertical subsurface flow constructed wetlands (VSSF CWs) were employed to investigate the use of biochar that could be produced with local agricultural biomass through pyrolysis, recycled glass from local recycling companies and gel beads with decreased packing volume and shipping cost as substrate alternatives to sand. The materials were assessed in terms of granulometry, porosity, adsorption capacity and hydraulic conductivity and were used for the treatment of an upflow anaerobic sludge blanket (UASB) reactor, treating domestic wastewater, effluent. Granulometry was a major factor impacting TSS removal that ranged from 81% ± 10% to 97% ± 2%.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
Controlling runoff pollution is crucial to improving ecological environments in the context of urbanization and climate change. However, a significant research gap remains in the treatment and reuse of roof runoff, particularly during the first flush. To address this, a novel dry-wet polymorphic constructed wetland (DWP-CW) system was developed to purify first flush runoff efficiently and reliably.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!