The rapid development of the economy leads to the high demand for deep coal resources, which further poses the potential problem of deep gas (or methane) emissions. The clarification of deep gas occurrence law for coal mines provides theoretical and data support for methane emission predictions, and assists industrial and mining enterprises in planning targeted emission reduction measures. This study defined and verified the existence of a critical depth for the deep gas occurrence in coal mines based on a multiple-scale case study of how the gas occurrence is associated with depth and stress status changes in the Pingdingshan No.8 Coal Mine. In addition, 882 sets of gas content data from 7 major mining areas in China were collected and their gas content distributions among various depths were statistically analyzed to prove the universal existence of critical depth. The results show that the critical depth of Pingdingshan No.8 Coal Mine is 509 m, and the critical depth of other Chinese areas is about 400 to 1000 m. Significant differences were observed in the pore space, surface, and gas desorption characteristics for coal samples with different depths and stress states. The pore structure in the critical depth area is relatively developed, and gas is easily accumulated. The gas occurrence of both normal and abnormal gas gradually increases with the depth's increase in areas above the critical depth, whereas the gas occurrence gradually decreases for areas below the critical depth, showing that the existence of critical depth lead to significant deviations in gas emission predictions. The results provide a fundamental reference for gas emission prediction, greenhouse effect assessment, and carbon emission factor calculation and indicate that using the traditional linear method may be misleading for evaluating deep gas occurrence and emission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173957 | DOI Listing |
Pediatr Res
January 2025
Division of General Pediatrics, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
Climate change critically impacts global pediatric health, presenting unique and escalating challenges due to children's inherent vulnerabilities and ongoing physiological development. This scoping review intricately intertwines the spheres of climate change, pediatric health, and Artificial Intelligence (AI), with a goal to elucidate the potential of AI and digital health in mitigating the adverse child health outcomes induced by environmental alterations, especially in Low- and Middle-Income Countries (LMICs). A notable gap is uncovered: literature directly correlating AI interventions with climate change-impacted pediatric health is scant, even though substantial research exists at the confluence of AI and health, and health and climate change respectively.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute for Sustainability, Energy and Environment, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Critical source areas (CSAs) can act as a source of phosphorus (P) in surface waters by releasing soil P to porewater during frequent rainfall events. The extent of P release under short-term, frequent submergence has not been systematically studied in CSAs in New Zealand. A study was conducted to explore the potential of three contrasting dairy and sheep/beef farm soils (Recent, Pallic and Allophanic soils) to release P to porewater and pondwater under short-term and frequent submergence.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, 130102, Jilin Province, China.
The expansion of irrigated agriculture in semi-arid regions exacerbates the degradation of wetland ecosystems. Precision water recharge can facilitate near-natural restoration of degraded wetlands by alleviating the conflict between wetlands and agricultural water use. However, although the ecological significance of precision water recharge as a nature-based solution for restoring wetland vegetation has been widely acknowledged, the mechanisms driving its role in spikelet development and seed growth in Carex schmidtii Meinsh.
View Article and Find Full Text PDFRev Lat Am Enfermagem
January 2025
National Autonomous University of Honduras, School of Nursing, Tegucigalpa, Francisco Morazán, Honduras.
Objective: to explore the nurses' perceptions among the quality of care to stroke patients in a public hospital in Northern Honduras.
Method: a descriptive phenomenological study was carried out. The data collection was conducted by means of depth- interviews to 20 general nurses from the emergency and clinical medicine departments from the Atlántida General Hospital.
JMIR Med Inform
January 2025
Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada.
Background: While expert optometrists tend to rely on a deep understanding of the disease and intuitive pattern recognition, those with less experience may depend more on extensive data, comparisons, and external guidance. Understanding these variations is important for developing artificial intelligence (AI) systems that can effectively support optometrists with varying degrees of experience and minimize decision inconsistencies.
Objective: The main objective of this study is to identify and analyze the variations in diagnostic decision-making approaches between novice and expert optometrists.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!