This study exposed a microalgal consortium formed by Auxenochlorella protothecoides, Tetradesmus obliquus, and Chlamydomonas reinhardtii to six mixed wastewater media containing different proportions of primary (P) or secondary (S) effluents diluted in centrate (C). Algae could grow at centrate concentrations up to 50 %, showing no significant differences between effluents. After acclimation, microalgae cultivated in 50%P-50%C and 50%S-50%C grew at a rate similar to that of control cultures (0.59-0.66 d). These results suggest that the consortium acclimated to both sewage streams by modulating the proportion of the species and their metabolism. Acclimation also altered the photosynthetic activity of wastewater-grown samples compared to the control, probably due to partial photoinhibition, changes in consortium composition, and changes in metabolic activity. No major differences were observed between the two streams with respect to biochemical composition, biomass yield, or bioremediation capacity of the cultivated algae but algae grown in the secondary effluent showed qualitatively higher exopolysaccharides (EPS) production than algae grown in primary. Regarding wastewater remediation, microalgae grown in both WW media showed proficient nutrient removal efficiencies (close to 100 %); however, the final pH value (close to 11) would be controversial if the system were upscaled as it is over the legal limit and would cause phosphorus precipitation, so that CO addition would be required. The theoretical scale-up of the microalgae system could achieve water treatment costs of 0.109 €·m, which was significantly lower than the costs of typical activated sludge systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.174056 | DOI Listing |
Bioresour Technol
December 2024
Department of Biotechnology, Sathyabama Institute of Science and Technology, Deemed to be University, Chennai 600 119, Tamil Nadu, India.
This study investigates the potentials of Chlorococcum humicolo algal biomass for the extraction of valuable biochemical and biodiesel production, with focus on the phycoremediation of textile dye effluents. The alga was cultivated in three media: CFTRI medium, combined dye effluent, and dye bath effluent in the laboratory. The highest cell count (254 × 10 cells/ml) and lowest oil content (16.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany.
Diatoms are single-celled photosynthetic eukaryotes responsible for CO fixation and primary production in aquatic ecosystems. The cosmopolitan marine diatom can form seasonal blooms in coastal areas and interact with various microorganisms, including the parasitic oomycete . This unicellular eukaryote is mainly present in the northern hemisphere as an obligate parasite of the genus Understanding the interplay of abiotic factors such as temperature and biotic factors like parasitism on algal physiology is crucial as it dictates plankton community composition and is especially relevant during environmental changes and warming events.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Institute of Blue Biotechnology and Development, Málaga University, (IBYDA), 29004 Málaga, Spain.
The microalga sp. (Chlorophyceae) was cultured in a raceway pond (RWP) placed in a greenhouse. The objective of this case study was to monitor the photosynthesis performance and selected physicochemical variables (irradiance, temperature, dissolved oxygen concentration) of microalgae cultures in situ at various depths of RWP.
View Article and Find Full Text PDFFoods
November 2024
Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade-Faculty of Chemistry, 11000 Belgrade, Serbia.
Cultured meat technology is a form of cellular agriculture where meat is produced from animal cells grown in a lab, instead of raising and slaughtering animals. This technology relies heavily on fetal bovine serum (FBS) in cell media; hence, production is costly and contributes significantly to ammonia and greenhouse gas emissions. Achieving the successful commercialization of cell-cultured food requires the critical resolution of manufacturing cost and safety concerns.
View Article and Find Full Text PDFWater Sci Technol
December 2024
Department of Biological Engineering, Sustainable Waste-to-Bioproducts Engineering Center, Utah State University, Logan, Utah, USA.
Rotating algae biofilm reactors (RABRs) can reduce energy requirements for wastewater reclamation but require further optimization for implementation at water resource recovery facilities (WRRF). Optimizing RABR operation is challenging because conditions at WRRF change frequently, and disregarding interaction terms related to these changes can produce incorrect conclusions about RABR behavior. This study evaluated the two-way interaction and main effects of four factors on the biomass productivity and phosphorus removal efficiency of a microalgae-bacteria biofilm grown in municipal anaerobic digester centrate, with factor levels and operating conditions selected to mimic a pilot RABR at a WRRF in Utah.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!