Neosporosis is the major infectious cause of abortion and reproductive losses in cattle worldwide; however, there are no available vaccines or drugs to control this disease. Recently, a dual (positive and negative) DIVA-like (Differentiation of Infected from Vaccinated Animals) vaccine was evaluated in a pregnant mouse model of neosporosis, showing promising immunogenic and protective results. The current report aimed to study the safety, the dose-dependent immunogenicity and the dual DIVA-like character of a recombinant subunit vaccine composed of the major surface antigen from Neospora caninum (rNcSAG1) and the carrier/adjuvant Heat shock protein 81.2 from Arabidopsis thaliana (rAtHsp81.2) in cattle. Healthy heifers were separated and assigned to experimental groups A-F and subcutaneously immunized with 2 doses of vaccine formulations 30 days apart as follows: A (n = 4): 50 μg rNcSAG1 + 150 μg rAtHsp81.2; B (n = 4): 200 μg rNcSAG1 + 600 μg rAtHsp81.2; C (n = 4): 500 μg rNcSAG1 + 1,500 μg rAtHsp81.2; D (n = 3): 150 μg rAtHsp81.2; E (n = 3):1,500 μg rAtHsp81.2, and F (n = 3) 2 ml of sterile PBS. The immunization of heifers with the different vaccine or adjuvant doses (groups A-E) was demonstrated to be safe and did not modify the mean value of the evaluated serum biomarkers of metabolic function (GOT/ASP, GPT/ALT, UREA, Glucose and total proteins). The kinetics and magnitude of the immune responses were dose-dependent. The higher dose of the vaccine formulation (group C) stimulated a broad and potent humoral and cellular immune response, characterized by an IgG1/IgG2 isotype profile and IFN-γ secretion. In addition, this was the first time that dual DIVA-like character of a vaccine against neosporosis was demonstrated, allowing us to differentiate vaccinated from infected heifers by two different DIVA compliant test approaches. These results encourage us to evaluate its protective efficacy in infected pregnant cattle in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actatropica.2024.107293 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!