Regulation of YAP translocation by myeloid Pten deficiency alleviates acute lung injury via inhibition of oxidative stress and inflammation.

Free Radic Biol Med

Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China. Electronic address:

Published: September 2024

Background: Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is intricately involved in modulating the inflammatory response in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Nevertheless, the myeloid PTEN governing Hippo-YAP pathway mediated oxidative stress and inflammation in lipopolysaccharide (LPS)-induced ALI remains to be elucidate.

Methods: The floxed Pten (Pten) and myeloid-specific Pten knockout (Pten) mice were intratracheal instill LPS (5 mg/kg) to establish ALI, then Yap siRNA mix with the mannose-conjugated polymers was used to knockdown endogenous macrophage YAP in some Pten mice before LPS challenged. The bone marrow-derived macrophages (BMMs) from Pten and Pten mice were obtained, and BMMs were transfected with CRISPR/Cas9-mediated glycogen synthase kinase 3 Beta (GSK3β) knockout (KO) or Yes-associated protein (YAP) KO vector subjected to LPS (100 ng/ml) challenged or then cocultured with MLE12 cells.

Results: Here, our findings demonstrate that myeloid-specific PTEN deficiency exerts a protective against LPS-induced oxidative stress and inflammation dysregulated in ALI model. Moreover, ablation of the PTEN-YAP axis in macrophages results in reduced nuclear factor-E2-related factor-2 (NRF2) expression, a decrease in antioxidant gene expression, augmented levels of free radicals, lipid and protein peroxidation, heightened generation of pro-inflammatory cytokines, ultimately leading to increased apoptosis in MLE12 cells. Mechanistically, it is noteworthy that the deletion of myeloid PTEN promotes YAP translocation and regulates NRF2 expression, alleviating LPS-induced ALI via the inhibition of GSK3β and MST1 binding.

Conclusions: Our study underscores the crucial role of the myeloid PTEN-YAP-NRF2 axis in governing oxidative stress and inflammation dysregulated in ALI, indicating its potential as a therapeutic target for ALI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2024.06.016DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
stress inflammation
16
pten
12
myeloid pten
12
pten mice
12
yap translocation
8
pten deficiency
8
acute lung
8
lung injury
8
lps-induced ali
8

Similar Publications

Since the establishment of the COVID-19 pandemic, a range of studies have been developed to understand the pathogenesis of SARS-CoV-2 infection, vaccine development, and therapeutic testing. However, the possible impacts that these viruses can have on non-target organisms have been explored little, and our knowledge of the consequences of the COVID-19 pandemic for biota is still very limited. Thus, the current study aimed to address this knowledge gap by evaluating the possible impacts of oral exposure of C57Bl/6 J female mice to SARS-CoV-2 lysate protein (at 20 µg/L) for 30 days, using multiple methods, including behavioral assessments, biochemical analyses, and histopathological examinations.

View Article and Find Full Text PDF

A cross-tissue transcriptome-wide association study identifies new susceptibility genes for insomnia.

J Neurophysiol

January 2025

Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.

Despite a significant genetic component to insomnia (heritability: 22-25%), the genetic loci that modulate insomnia risk remain limited. We employed the Unified Test for Molecular Markers (UTMOST) for transcriptome-wide association studies (TWAS) across various tissues, integrating summary statistics from a Genome-Wide Association Study (GWAS) of 462,341 European participants with gene expression data from the Genotype-Tissue Expression (GTEx) project. Three validation methods (FUSION, FOCUS, and MAGMA) were used to confirm important genes.

View Article and Find Full Text PDF

The present study aimed to unveil the gastroprotective potential of Vaccinium macrocarpon (VM) extract and its mechanism of action against indomethacin (INDO)-induced gastric ulcers in rats. To achieve this goal, rats were pretreated with either omeprazole (20 mg/kg) or VM (100 mg/kg) orally for 14 consecutive days. Gastric tissue samples were collected and various parameters were evaluated to understand the mechanism of VM's action, including the levels of superoxide dismutase, malondialdehyde, glutathione, CAT and transforming growth factor beta (TGF-β), as well as the mRNA expression levels of tumour necrosis factor alpha, interleukin 1 beta, nuclear factor kappa B (NF-κB) and inhibitor kappa B (IκB).

View Article and Find Full Text PDF

is a foodborne pathogen linked to severe infections in infants and often associated with contaminated powdered infant formula. The RecA protein, a key player in DNA repair and recombination, also influences bacterial resilience and virulence. This study investigated the impact of deletion on the pathogenicity and environmental stress tolerance of BAA-894.

View Article and Find Full Text PDF

Sugarcane smut caused by is a global sugarcane disease, and studying its molecular pathogenesis is crucial for discovering new prevention and control targets. This study was based on the transcriptome sequencing data of two isolates with different pathogenicities ( and ) of the and screened out a gene encoding the Major Facility Superfamily (MFS) sugar transporter protein and named it . Knockout mutants ( and ) and complementary mutants ( and ) were obtained through polyethylene glycol (PEG)-mediated protoplast transformation technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!