A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Understanding the origins of reversible and hysteretic pathways of adsorption phase transitions in metal-organic frameworks. | LitMetric

Understanding the origins of reversible and hysteretic pathways of adsorption phase transitions in metal-organic frameworks.

J Colloid Interface Sci

Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States. Electronic address:

Published: November 2024

Phase behavior of nanoconfined fluids adsorbed in metal-organic frameworks is of paramount importance for the design of advanced materials for energy and gas storage, separations, electrochemical devices, sensors, and drug delivery, as well as for the pore structure characterization. Phase transformations in adsorbed fluids often involve long-lasting metastable states and hysteresis that has been well-documented in gas adsorption-desorption and nonwetting fluid intrusion-extrusion experiments. However, theoretical prediction of the observed nanophase behavior remains a challenging problem. The mesoscopic canonical, or mesocanonical, ensemble (MCE) is devised to study the nanophase behavior under conditions of controlled fluctuations to stabilize metastable and labile states. Here, we implement and apply the MCE Monte Carlo (MCEMC) simulation scheme to predict the origins of reversible and hysteric adsorption phase transitions in a series of practical MOF materials, including IRMOF-1, ZIF-412, UiO-66, Cu-BTC, IRMOF-74-V, VII, and IX. The MCEMC method, called the gauge cell method, allows to produce Van der Waals type isotherms with distinctive swings around the phase transition regions. The constructed isotherms determine the positions of phase equilibrium and spinodals, as well as the nucleation barriers separating metastable states. We demonstrate the unique capabilities of the MCEMC method in quantitative predictions of experimental observations compared with the conventional grand canonical and canonical ensemble simulations. The MCEMC method is implemented in the open-source RASPA and LAMMPS software packages and recommended for studies of adsorption behavior and pore structure characterization of MOFs and other nanoporous materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.06.083DOI Listing

Publication Analysis

Top Keywords

mcemc method
12
origins reversible
8
adsorption phase
8
phase transitions
8
metal-organic frameworks
8
pore structure
8
structure characterization
8
metastable states
8
nanophase behavior
8
phase
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!