A microchip based Z-cell absorbance detector integrating micro-lenses and slits for portable liquid chromatography.

J Chromatogr A

Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China. Electronic address:

Published: August 2024

A miniaturized microchip-based absorbance detector was developed for portable high-performance liquid chromatography (HPLC) to test glycated hemoglobin (HbA). The microchip integrating a Z-shaped cell, two collimating micro-lenses and two ink-filled optical slits is small in size (30 mm × 15 mm × 7 mm). The Z-shaped cell has a cross-sectional size of 500 μm × 500 μm and a physical optical path length of 2 mm. Two collimating micro-lenses were inserted in empty grooves on both sides of the cell, one micro-lens for collimating the initial light and the other for focusing the transmitted light. Optical slits on each end of the cell were used to block the stray light. Therefore, this detector indicated a low stray light level (0.011 %) and noise level (2.5 × 10 AU). This detector was applied for the commercial HPLC system to detect HbA level, and showed a low limit of detection (0.5 μg/mL) and excellent repeatability (≤ 2.03 %). The sensitivity was enhanced by 3.4 times when the optical path length was increased from 0.5 mm to 2 mm and the stray light was blocked by optical slits. The miniaturized microchip-based absorbance detector developed shows a great potential for application in portable and compact HPLC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2024.465099DOI Listing

Publication Analysis

Top Keywords

absorbance detector
12
optical slits
12
stray light
12
liquid chromatography
8
miniaturized microchip-based
8
microchip-based absorbance
8
detector developed
8
z-shaped cell
8
collimating micro-lenses
8
500 μm
8

Similar Publications

Synchrotron microbeam radiotherapy (MRT), which has entered the clinical transfer phase, requires the development of appropriate quality assurance (QA) tools due to very high dose rates and spatial hyperfractionation. A microstrip plastic scintillating detector system with associated modules was proposed in the context of real-time MRT QA. A prototype of such a system with 105 scintillating microstrips was developed and tested under MRT conditions.

View Article and Find Full Text PDF

The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.

View Article and Find Full Text PDF

Development of Betalain-immobilized polylactic acid nanofibers as a green and sustainable sensor for toxic ammonia.

Int J Biol Macromol

December 2024

National Research Centre (Scopus Affiliation ID 60014618), Textile Industries Research Division, Pre-treatment and Finishing of Cellulose Based Textiles Department, 33 El-Buhouth St., (former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.

Ammonia has been an important industrial colorless agent. Exposure to gaseous ammonia results in organ damage or even death. Herein, an environmentally friendly colorimetric detector for aqueous and gaseous ammonia was prepared utilizing vapochromic polylactic acid nanofibers.

View Article and Find Full Text PDF

Low-dimensional hybrid organic-inorganic perovskites (HOIPs) containing chiral organic ligands have recently emerged as promising candidates for circularly polarized light (CPL) detection, which can distinguish left- and right-handed CPL directly. However, the increase in responsivity and realization of self-powered CPL photodetector remain a challenge. Meanwhile, there is a trade-off between the photocurrent responsivity and the ability to differentially absorb CPL in detectors based on these low-dimensional perovskites.

View Article and Find Full Text PDF

The gastrointestinal absorption characteristics and metabolic mechanisms of polysaccharides from Hohenbuehelia serotina.

Food Chem

December 2024

Nano-Biotechnology Key Laboratory of Hebei Province, State Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. Electronic address:

In order to elucidate the digestion, absorption and metabolism mechanism, Hohenbuehelia serotina polysaccharides were successfully labelled by fluorescein isothiocyanate (FITC-Tyr-HSP), with the fluorescent substitution degree of 0.37 %. FITC-Tyr-HSP with excellent physiological stability possessed the significant fluorescent characteristics, which could be dynamically monitored by in vivo fluorescence imaging and high performance gel permeation chromatography-fluorescence detector (HPGPC-FLD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!