The epoxy propanol molecular cage bonded silica stationary phase, RCC3-GLD@silica, synthesized through the ring-opening reaction of secondary amine with epoxy propanol using RCC3-R as the scaffold unit, was successfully prepared as confirmed by infrared spectroscopy, thermogravimetric analysis, and nitrogen adsorption-desorption characterization. This stationary phase demonstrated excellent separation performance in both reversed-phase and hydrophilic chromatography modes, effectively separating a wide variety of compounds including alkylbenzenes, polycyclic aromatic hydrocarbons, phenols, anilines, sulfonamides, nucleosides, amino acids, sugars, and acids. The development of RCC3-GLD@silica benefits from the synergistic effects of its hydrophobic and hydrophilic actions, as evidenced by the U-shaped characteristic of the retention factor for nucleoside compounds with changes in the aqueous content of the mobile phase, further confirming the simultaneous presence of reversed-phase and hydrophilic chromatography mechanisms. Not only did this stationary phase successfully separate 33 compounds in reversed-phase chromatography mode, but it also separated 54 compounds in hydrophilic interaction chromatography mode, showcasing its broad separation capability from weakly polar to strongly polar compounds on a single chromatographic column. This indicates a wide application prospect in the field of chromatographic analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2024.465098DOI Listing

Publication Analysis

Top Keywords

stationary phase
16
epoxy propanol
12
chromatographic column
8
propanol molecular
8
molecular cage
8
cage bonded
8
bonded silica
8
silica stationary
8
reversed-phase hydrophilic
8
hydrophilic chromatography
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!