Inflammation and associated disorders have been a major contributing factor to mortality worldwide. The augmented mortality rate and emerging resistance against the approved therapeutics necessitate the discovery of novel chemistries destined for multiple clinical settings. Cellular factories including endophytic fungi have been tapped for chemical diversity with therapeutic potential. The emerging evidence has suggested the potential of bioactive compounds isolated from the endophytic fungi as putative agents to combat inflammation-associated disorders. The review summarizesand assists the readers in comprehending the structural and functional aspects of the medicinal chemistries identified from endophytic fungi as anticancer, antiobesity, antigout, and immunomodulatory agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2024.107576DOI Listing

Publication Analysis

Top Keywords

endophytic fungi
16
cellular factories
8
medicinal chemistries
8
endophytic
4
fungi cellular
4
factories novel
4
novel medicinal
4
chemistries inflammation
4
inflammation associated
4
associated disorders
4

Similar Publications

The fungus Beauveria felina is often classified as one of the so-called good biocontrol agents. However, no information is available about the growth of this entomopathogenic fungus in the presence of other endophytic fungi, which are usually found in plant tissues. Effects of fungal interactions vary from inhibiting the activity of a biocontrol agent to stimulating its effect on the targeted pathogen.

View Article and Find Full Text PDF

Background: Fungal plant diseases cause major crop losses. Phytopathogenic fungi's ability to evolve resistance to fungicides, alongside ongoing prohibition of such agents by the European Commission because of their pronounced adverse effects on human health and the environment, make their control a challenge. Moreover, the development of less perilous fungicides is a complex task.

View Article and Find Full Text PDF

Understanding the change in plant-associated microbial diversity and secondary metabolite biosynthesis in medicinal plants due to their cultivation in non-natural habitat (NNH) is important to maintain their therapeutic importance. Here, the bacterial endomicrobiome of Podophyllum hexandrum plants of natural habitat (NH; Kardang and Triloknath locations) and NNH (Palampur location) was identified and its association with the biosynthesis of podophyllotoxin (PTOX) was revealed. Rhizomes (source of PTOX) of plants of NH had highest endophytic bacterial diversity compared to NNH-plants.

View Article and Find Full Text PDF

The research highlights the importance of exploring endophytic microbiomes of medicinal plants to uncover their potential for secondary metabolite production and their role in the biosynthesis of host-derived compounds. This study was aimed to isolate leaf endophytic bacteria of Rauvolfia serpentina, investigate their antibacterial, antioxidant potentials and detect host-origin compound reserpine using Reverse Phase High-Performance Liquid Chromatography (RPHPLC). Untargeted analysis via Ultra High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) was conducted for profiling main phytochemicals in the leaves and to explore potential bioactive compounds in bacterial extracts.

View Article and Find Full Text PDF

Isolation of an endophytic yeast for improving the antibacterial activity of water chestnut Jiaosu: Focus on variation of microbial communities.

Enzyme Microb Technol

January 2025

College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China. Electronic address:

Recent years have seen an increase in the development of functional Jiaosu products, including eco-friendly Jiaosu and antimicrobial healthcare fermentation products. As a result, research on the antibacterial activity of Jiaosu has attracted attention. In the present study, the endophytic yeast WCF016, which exhibits antibacterial activity against Escherichia coli and Staphylococcus aureus, was isolated from the peel of water chestnut and identified as Candida sake via morphological and phylogenetic analyses based on 26S rDNA D1/D2 region sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!