Abnormal resting-state hyperconnectivity in schizophrenia: A whole-head near-infrared spectroscopy study.

Schizophr Res

Department of Neuropsychiatry, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Center for Diversity in Medical Education and Research, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.

Published: August 2024

AI Article Synopsis

  • Near-infrared spectroscopy (NIRS) is a noninvasive method that measures brain blood oxygenation to understand neural activity.
  • Researchers studied resting-state brain activity in 24 individuals with schizophrenia and 90 healthy controls, discovering higher functional connectivity in specific brain areas of schizophrenia patients.
  • The findings link increased brain connectivity to the severity of negative symptoms and dosage of antipsychotic medication, indicating NIRS could have useful clinical applications.

Article Abstract

Near-infrared spectroscopy (NIRS) is a noninvasive functional neuroimaging modality that can detect changes in blood oxygenation levels by tracking cortical neural activity. We recorded the resting-state brain activity of 24 individuals with schizophrenia and 90 healthy controls for 8 min using a whole-head NIRS arrangement and then used partial correlation analysis to estimate the resting-state functional connectivity (RSFC) between 17 cortical regions. We found that the RSFC between the bilateral orbitofrontal cortices (OFCs) and between the right temporal and parietal lobes was significantly higher in patients with schizophrenia than in healthy controls. The RSFC between the bilateral OFCs was positively correlated with negative symptom severity, whereas the RSFC between the right temporal and parietal lobes was positively correlated with the chlorpromazine equivalent for antipsychotics prescribed to patients with schizophrenia. This finding was consistent with that for the RSFC calculated using the anterior 52-channel signals. Our results suggest that NIRS-based RSFC measurements have potential clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2024.06.025DOI Listing

Publication Analysis

Top Keywords

near-infrared spectroscopy
8
schizophrenia healthy
8
healthy controls
8
rsfc bilateral
8
temporal parietal
8
parietal lobes
8
patients schizophrenia
8
positively correlated
8
rsfc
6
abnormal resting-state
4

Similar Publications

Frequency-domain near-infrared spectroscopy (FD-NIRS) is a noninvasive method for quantitatively measuring optical absorption and scattering in tissue. This study introduces structured interrogation (SI) as an interference-based approach for implementing FD-NIRS in order to enhance optical property estimation in multilayered tissues and sensitivity to deeper layers. We find that, in the presence of realistic noise, SI accurately estimates properties and chromophore concentrations with less than a 5% error.

View Article and Find Full Text PDF

Interpersonal interaction is essential to romantic couples. Understanding how gender impacts an individual's brain activities during intimate interaction is crucial. The present study examined gender differences in oxyhemoglobin (oxy-Hb) changes during real-time drawing interactions between members of romantic couples using non-invasive functional near-infrared spectroscopy (fNIRS).

View Article and Find Full Text PDF

Restoration of independent walking ability is the primary objective of stroke rehabilitation; however, not all patients achieve this goal due to diverse impairments in the paretic lower limb and compensatory mechanisms that lead to an asymmetrical and mechanically inefficient gait. This investigation aimed to examine alterations in cortical activation in post-stroke patients while walking with a wearable two-channel functional electrical stimulation (FES) in comparison to walking without FES. This observational study was conducted to discern distinct activation patterns in 19 stroke patients during sessions with and without FES, while using functional near-infrared spectroscopy (fNIRS) to monitor changes in blood oxygen levels.

View Article and Find Full Text PDF

Monitoring of perioperative tissue perfusion and impact on patient outcomes.

J Cardiothorac Surg

January 2025

Department of Anesthesiology, Zhongda hospital, Southeast University, No. 87 Dingjiaqiao, Nanjing City, 210009, Jiangsu Province, China.

Monitoring perioperative tissue perfusion is crucial in clinical anesthesia to protect organs and ensure patient safety. Indicators like hemodynamic parameters, tissue metabolism, and microcirculation markers are used for assessment. Studies show intraoperative hypotension negatively impacts outcomes, though blood pressure alone may not reflect tissue perfusion accurately.

View Article and Find Full Text PDF

Functional near-infrared spectroscopy (fNIRS) is an increasingly popular neuroimaging technique that measures cortical hemodynamic activity in a non-invasive and portable fashion. Although the fNIRS community has been successful in disseminating open-source processing tools and a standard file format (SNIRF), reproducible research and sharing of fNIRS data amongst researchers has been hindered by a lack of standards and clarity over how study data should be organized and stored. This problem is not new in neuroimaging, and it became evident years ago with the proliferation of publicly available neuroimaging datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!