Guavinoside B (GUB) is a characteristic constituent from guava with strong antioxidant activity; however, its low water solubility limits its utilization. Herein, we investigated the interaction between GUB and zein, a prolamin with self-assembling property, using multiple spectroscopic methods and fabricated GUB-zein-NaCas nanoparticles (GUB-Z-N NPs) via the antisolvent coprecipitation approach. GUB caused fluorescence quenching to zein via the static quenching mechanism. Fourier-transform infrared spectroscopy and computational analysis revealed that GUB bound to zein via van der Waals interaction, hydrogen bond, and hydrophobic forces. The GUB-Z-N NPs were in the nanometric size range (< 200 nm) and exhibited promising encapsulation efficiency and redispersibility after freeze-drying. These particles remained stable for up to 31 days at 4 °C and great resistance to salt and pH variation, and displayed superior antioxidant activity to native GUB. The current study highlights the potential of zein-based nanoparticles as delivery vehicles for GUB in the food industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.140066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!