Thin-plate spline (TPS) is a principal warp that allows for representing elastic, nonlinear transformation with control point motions. With the increase of control points, the warp becomes increasingly flexible but usually encounters a bottleneck caused by undesired issues, e.g., content distortion. In this paper, we explore generic applications of TPS in single-image-based warping tasks, such as rotation correction, rectangling, and portrait correction. To break this bottleneck, we propose the coupled thin-plate spline model (CoupledTPS), which iteratively couples multiple TPS with limited control points into a more flexible and powerful transformation. Concretely, we first design an iterative search to predict new control points according to the current latent condition. Then, we present the warping flow as a bridge for the coupling of different TPS transformations, effectively eliminating interpolation errors caused by multiple warps. Besides, in light of the laborious annotation cost, we develop a semi-supervised learning scheme to improve warping quality by exploiting unlabeled data. It is formulated through dual transformation between the searched control points of unlabeled data and its graphic augmentation, yielding an implicit correction consistency constraint. Finally, we collect massive unlabeled data to exhibit the benefit of our semi-supervised scheme in rotation correction. Extensive experiments demonstrate the superiority and universality of CoupledTPS over the existing State-of-the-Art (SoTA) solutions for rotation correction and beyond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2024.3417024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!