The paramount importance of mechanical forces in morphogenesis and embryogenesis is widely recognized, but understanding the mechanism at the cellular and molecular level remains challenging. Because of its simple internal organization, is a rewarding system of study. As demonstrated experimentally, after an initial period of steady elongation driven by the actomyosin network, muscle contractions operate a quasi-periodic sequence of bending, rotation, and torsion, that leads to the final fourfold size of the embryos before hatching. How actomyosin and muscles contribute to embryonic elongation is investigated here theoretically. A filamentary elastic model that converts stimuli generated by biochemical signals in the tissue into driving forces, explains embryonic deformation under actin bundles and muscle activity, and dictates mechanisms of late elongation based on the effects of energy conversion and dissipation. We quantify this dynamic transformation by stretches applied to a cylindrical structure that mimics the body shape in finite elasticity, obtaining good agreement and understanding of both wild-type and mutant embryos at all stages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189629 | PMC |
http://dx.doi.org/10.7554/eLife.90505 | DOI Listing |
J Electromyogr Kinesiol
January 2025
Department of Rehabilitation Sciences, the Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China. Electronic address:
Electromyography (EMG) is increasingly used in stroke assessment research, with studies showing that EMG co-contraction (EMG-CC) of upper limb muscles can differentiate stroke patients from healthy individuals and correlates with clinical scales assessing motor function. This suggests that EMG-CC has potential for both assessing motor impairments and monitoring recovery in stroke patients. However, systematic reviews on EMG-CC's effectiveness in stroke assessment are lacking.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
January 2025
Faculty of Sport and Physical Education, University of Belgrade, 11000 Belgrade, Serbia.
Foam rolling is widespread and deeply rooted in exercise practice. The optimal duration and role of this treatment still lack scientific consensus. A relatively novel foam rolling treatment that combines vibration during application targets different muscle characteristics that are not well understood.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
December 2024
Department of Physical and Mental Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80100 Naples, Italy.
Background: This observational study investigates the efficacy of combining local muscle vibration (LMV) therapy and kinesiotaping using the McConnell method (KMcCM) in patients with patellofemoral pain syndrome (PFPS). PFPS is a prevalent knee condition characterized by anterior or medial knee pain exacerbated by activities that overload the patellofemoral joint.
Objective: The primary aim of this study was to evaluate the effectiveness of LMV combined with KMcCM in reducing pain and improving function in PFPS patients.
Vision (Basel)
January 2025
Centre Gilles Gaston Granger, UMR 7304 Centre National de la Recherche Scientifique, Aix Marseille Université, 13621 Aix-en-Provence, France.
The appearance of an object triggers an orienting gaze movement toward its location. The movement consists of a rapid rotation of the eyes, the saccade, which is accompanied by a head rotation if the target eccentricity exceeds the oculomotor range and by a slow eye movement if the target moves. Completing a previous report, we explain the numerous points that lead to questioning the validity of a one-to-one correspondence relation between measured physical values of gaze or head orientation and neuronal activity.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Textiles, Donghua University, Shanghai, 201620, China.
Fiber-based artificial muscles are soft actuators used to mimic the movement of human muscles. However, using high modulus oxide ceramics to fabricate artificial muscles with high energy and power is a challenge as they are prone to brittle fracture during torsion. Here, a ceramic metallization strategy is reported that solves the problem of low torsion and low ductility of alumina (AlO) ceramics by chemical plating a thin copper layer on alumina filaments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!