Sensitive and accurate determination of glyphosate (GLYP) is vital for food safety and environmental protection. Herein, a novel electrochemical ratiometric biosensor was designed for the accurate quantification of GLYP through one-step electrodeposition of MWCNTs-Cu MOF films. MWCNTs-Cu MOF nanostructures were directly electro-synthesized on the electrode from the precursor solution. The combination of Cu MOFs with MWCNTs not merely improved the conductivity of MOFs, but also enhanced the sensitivity of the biosensor. Furthermore, Cu sites within Cu MOFs were turned into CuCl to further amplify the current signal and enable the specific recognition of GLYP through competing reactions with the transformation of CuCl into non-electroactive Cu-GLYP. Meanwhile, internal reference molecules of methylene blue (MB) were incorporated to improve the measurement accuracy of GLYP for reducing unpredictable measurement errors aroused by environmental deviations. The ratiometric electrochemical sensor exhibited a high linearity with the logarithmic value of GLYP concentration from 0.5 nM to 400 nM. The detection limit was estimated to be as low as 0.014 nM. Finally, the present sensor with ratiometric signal export was applied for GLYP analysis in real samples with high sensitivity and accuracy. The simplicity and reliability of the ratiometric sensor make it a worthy and powerful tool for food and environmental monitoring. This design strategy also provides an avenue for the development of simple and efficient biosensors for other substances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4ay00691g | DOI Listing |
Anal Methods
July 2024
Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!