Anthropogenic activities have caused irreversible consequences on our planet, including climate change and environmental pollution. Nevertheless, reducing greenhouse gas (GHG) emissions and capturing carbon can mitigate global warming. Biochar and hydrochar are increasingly used for soil remediation due to their stable adsorption qualities. As soil amendments, these materials improve soil quality and reduce water loss, prevent cracking and shrinkage, and interact with microbial communities, resulting in a promising treatment method for reducing gas emissions from the top layer of soil. However, during long-term studies, contradictory results were found, suggesting that higher biochar application rates led to higher soil CO effluxes, biodiversity loss, an increase in invasive species, and changes in nutrient cycling. Hydrochar, generated through hydrothermal carbonization, might be less stable when introduced into the soil, which could lead to heightened GHG emissions due to quicker carbon breakdown and increased microbial activity. On the other hand, biochar, created via pyrolysis, demonstrates stability and can beneficially impact GHG emissions. Biochar could be the preferred red option for carbon sequestration purposes, while hydrochar might be more advantageous for use as a gas adsorbent. This review paper highlights the ecological impact of long-term applications of biochar and hydrochar in soil. In general, using these materials as soil amendments helps establish a sustainable pool of organic carbon, decreasing atmospheric GHG concentration and mitigating the impacts of climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-33807-8 | DOI Listing |
J Hazard Mater
November 2024
Energy and Resources Institute, Charles Darwin University, Ellengowan Drive, Purple 12.01.08, Casuarina, NT 0810, Australia. Electronic address:
Contamination of chars with dioxin-like polychlorinated biphenyls (dl-PCB) significantly limits their use and hinders their deployment in the circular bioeconomy, specifically in applications that may lead to dietary exposure. Here, for the first time, we review the levels of contamination of chars produced from pyrolysis and hydrothermal carbonisation (HTC) with dl-PCB congeners. We conduct a detailed and critical examination of the role played by the processing parameters, such as temperature and residence time, and the reaction mechanisms, to detoxify the biomass under an oxygen-free atmosphere during its valorisation.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China. Electronic address:
Nitrogen-doped porous hydrochar (NPHC) was successfully synthesized by hydrothermal carbonization and activation with KHCO, which was employed for scavenging hexavalent chromium (Cr(VI)) and bisphenol A (BPA) in contaminated water. N doping increased the unique active sites such as amino and molecular N in NPHC for adsorbing contaminants, and enhanced the activation effect. Compared to original (HC) and N-doped hydrochar (NHC), the S of material improved from 3.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India; Institute of Interdisciplinary Studies, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India. Electronic address:
This research outlines an integrated experimental and theoretical strategy for converting Pistachio-shells by hydrothermal carbonization into a bimetallic magnetic hydrochar (BMHC), for effective adsorptive-degradation of organic pollutants. Environmental sustainability of BMHC is supported by life cycle assessment(LCA). Adsorption experiments showed rapid and efficient dye (MB, CV) and antibiotic (TC) removal within 50 min, with >97% efficiency.
View Article and Find Full Text PDFBioresour Technol
January 2025
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
Nitrogen-doped carbon materials are deemed promising cathode catalysts for microbial fuel cells (MFCs). The challenge lies in reducing costs and enhancing the proportion of electrocatalytically active nitrogenous functional groups. This study proposes a hydrothermal-mediated in-situ doping method to produce nitrogen-doped biochar from aquatic plants.
View Article and Find Full Text PDFEnviron Pollut
October 2023
College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China. Electronic address:
Carbonaceous materials, derived from waste biomass, have proven to be a viable and appealing alternative for removing emerging micro-pollutants, such as per- and polyfluoroalkyl substances (PFAS). To assess the feasibility and efficacy of using material derived from food waste to alleviate PFAS pollution, this study prepared activated hydrochar (AHC) for sorbing ten PFAS, including five perfluoroalkyl carboxylic acids (PFCA; C4-C8), three perfluoroalkyl sulfonic acids (PFSA; C4, C6, C8), and two emerging PFAS, namely hexafluoropropylene oxide dimer acid (commercial name GenX, an alternative to perfluorooctanoic acid (PFOA)) and 6:2 fluorotelomer sulfonic acid (6:2 FTS). The results demonstrated that AHC possessed a relatively high specific surface area (207 m/g) and hydrophobic surface properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!