AI Article Synopsis

  • Hepatitis B virus (HBV) particles are composed of HBV core protein (HBV Cp) that forms double-shelled capsids, which can spontaneously assemble under specific conditions, utilizing high ionic strength.
  • Traditional methods for studying HBV capsid assembly are complex and expensive, involving techniques like light scattering and microscopy, whereas this research introduces ProCharTS, a simpler, label-free technique that monitors real-time assembly through protein charge transfer spectra.
  • The study demonstrates that ProCharTS effectively tracks capsid formation, as the absorbance and luminescence increase during assembly, and combined with fluorescence anisotropy assays, it provides a sensitive measure of capsid characteristics compared to native dimers.

Article Abstract

Hepatitis B virions are double-shelled particles, with a diameter of 40-42 nm, consisting of a nucleocapsid called the HBV core protein (HBV Cp). It is an ordered assembly of 90-120 homodimers arranged in an icosahedral symmetry. Both the full-length HBV Cp and the first-149 residue domain, HBV Cp149, can spontaneously assemble in vitro into capsids with 120 Cp dimers ( = 4) or 90 Cp dimers ( = 3), triggered by high ionic strength of 0.25-0.5 M NaCl. The assembly disassembly of HBV Cp149 capsids are generally studied by light scattering, size-exclusion chromatography, atomic force microscopy, transmission electron microscopy, and other high-end expensive techniques. Here, we report a simple, yet robust, label-free technique exploiting protein charge transfer spectra (ProCharTS) to monitor the capsid assembly in real-time. ProCharTS absorption in the near UV-visible region (250-800 nm) arises when photoinduced electron transfer occurs from HOMO of COO in glutamate () to LUMO of NH in lysine polypeptide backbone () of the protein. Alternatively, it can also occur from polypeptide backbone () to in arginine, histidine, or lysine cation. ProCharTS is observed profusely among proximal charge clusters in folded proteins. Here, we show that, ProCharTS absorption among growing HBV capsids is amplified when HBV Cp homodimers assemble, generating new contacts among charged residues in the dimer-dimer interface. We notice a time-dependent sigmoidal increase in ProCharTS absorbance and luminescence during capsid formation in comparison to pure dimers. Additionally, a combined approach of anisotropy-based fluorescence assay is reported, where an increased fluorescence anisotropy was observed in capsids as compared to native and unfolded dimers. We conclude that ProCharTS can serve as a sensitive label-free tool for rapid tracking of capsid assembly in real-time and characterize the assembled capsids from dimers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.4c00521DOI Listing

Publication Analysis

Top Keywords

capsid assembly
12
assembly real-time
12
core protein
8
protein charge
8
charge transfer
8
transfer spectra
8
hbv cp149
8
procharts absorption
8
polypeptide backbone
8
hbv
7

Similar Publications

Mimicking the superstructures and properties of spherical biological encapsulants such as viral capsids and ferritin offers viable pathways to understand their chiral assemblies and functional roles in living systems. However, stereospecific assembly of artificial polyhedra with mechanical properties and guest-binding attributes akin to biological encapsulants remains a formidable challenge. Here we report the stereospecific assembly of dynamic supramolecular snub cubes from 12 helical macrocycles, which are held together by 144 weak C-H hydrogen bonds.

View Article and Find Full Text PDF

Maize Streak Virus: Single and Gemini Capsid Architecture.

Viruses

November 2024

Department of Biochemistry and Molecular Biology, College of Medicine Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA.

are ssDNA plant viruses whose control has both economical and agricultural importance. Their capsids assemble into two distinct architectural forms: (i) a T = 1 icosahedral and (ii) a unique twinned quasi-isometric capsid. Described here are the high-resolution structures of both forms of the maize streak virus using cryo-EM.

View Article and Find Full Text PDF

The capsid proteins of many viruses are capable of spontaneous self-assembly into virus-like particles (VLPs), which do not contain the viral genome and are therefore not infectious. VLPs are structurally similar to their parent viruses and are therefore effectively recognized by the immune system and can induce strong humoral and cellular immune responses. The structural features of VLPs make them an attractive platform for the development of potential vaccines and diagnostic tools.

View Article and Find Full Text PDF

Variable Assembly and Procapsid Binding of Bacteriophage P22 Terminase Subunits in Solution.

Pathogens

December 2024

Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92697-3900, USA.

Concatemeric viral DNA is packaged into bacteriophage P22 procapsids via a headful packaging mechanism mediated by a molecular machine consisting of small (gp3) and large (gp2) terminase subunits. Although a negative stain reconstruction exists for the terminase holoenzyme, it is not clear how this complex binds the dodecameric portal protein located at a 5-fold mismatch vertex. Herein, we describe new assemblies for the holoenzyme.

View Article and Find Full Text PDF

Viral capsid assembly is a complex and critical process, essential for understanding viral behavior, evolution, and the development of antiviral treatments, vaccines, and nanotechnology. Significant progress in studying viral capsid assembly has been achieved through various computational approaches, including molecular dynamics (MD) simulations, stochastic dynamics simulations, coarse-grained (CG) models, electrostatic analyses, lattice models, hybrid techniques, machine learning methods, and kinetic models. Each of these techniques offers unique advantages, and by integrating these diverse computational strategies, researchers can more accurately model the dynamic behaviors and structural features of viral capsids, deepening our understanding of the assembly process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!