A self-referenced optical phase noise analyzer for quantum technologies.

Rev Sci Instrum

Universität Innsbruck, Institut für Experimentalphysik, Innsbruck, Austria.

Published: June 2024

Second generation quantum technologies aim to outperform classical alternatives by utilizing engineered quantum systems. Maintaining the coherence required to enable any quantum advantage requires detailed knowledge and control over the noise that the hosting system is subjected to. Characterizing noise processes via their power spectral density is routinely done throughout science and technology and can be a demanding task. Determining the phase noise power spectrum in leading quantum technology platforms, for example, can be either outside the reach of many phase noise analyzers or prohibitively expensive. In this work, we present and characterize a low-complexity, low-cost optical phase noise analyzer based on the short-delay optical self-heterodyne measurements for quantum technology applications. Using this setup, we compare two ≈1 Hz linewidth ultra-stable oscillators near 729 nm. Their measurements are used as a baseline to determine and discuss the noise floor achieved in this measurement apparatus with a focus on limitations and their tradeoffs. The achieved noise floor in this all-stock-component implementation of an optical phase noise analyzer compares favorably with commercial offerings. This setup can be used particularly without a more stable reference or operational quantum system as a sensor as would be the case for many component manufacturers.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0183502DOI Listing

Publication Analysis

Top Keywords

phase noise
20
optical phase
12
noise analyzer
12
noise
9
quantum technologies
8
quantum technology
8
noise floor
8
quantum
7
phase
5
self-referenced optical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!