Measure for optical robustness of directly bonded glass-to-glass joint using its interaction with damage induced by fs laser.

Rev Sci Instrum

Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada.

Published: June 2024

To produce more powerful compact ultrafast lasers, research aims at improving the quality of bonds between components inside the laser cavity. Increasing bond robustness under optical irradiation helps the bonds to survive the high energy pulses that these lasers are designed to produce. A measure for such robustness is reported here to support work toward improved bonding processes for such lasers. We produced bonds between pairs of optical grade fused silica glass cylinders using a wet direct bonding procedure. We evaluated these bonds using conventional microscopy, including scanning electron microscopy (SEM) and optical microscopy, without quantifiable results. The bond interface was not discernible through conventional SEM imaging, even after cross sectioning and polishing. The majority of the interface was also undetectable in optical micrographs, except for some limited areas of interfacial disturbance. To obtain quantifiable results for optical robustness, we used an 800 nm femtosecond laser to produce filament-shaped damage from a focal spot moving across the interface. Microscopy of the damage showed its interaction with the interface, the presence of which caused a ≈0.130 to ≈0.230 mm long interruption in the damage line. The exact value depended not only on laser power but also interface quality, and thereby quantified the optical robustness. The reported method proved more sensitive in detecting bonds of fused silica samples compared to other visualization techniques used. Our results suggest a nuanced understanding of bonded glass joints-mechanically sound, yet with limited optical robustness under specific laser conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0197689DOI Listing

Publication Analysis

Top Keywords

optical robustness
16
laser produce
8
robustness reported
8
fused silica
8
optical
7
robustness
6
laser
5
bonds
5
interface
5
measure optical
4

Similar Publications

Sighting dominance is an important behavioral property which has been difficult to measure quantitatively with high precision. We developed a measurement method that is grounded in a two-camera model that satisfies these aims. Using a simple alignment task, this method quantifies sighting ocular dominance during binocular viewing, identifying each eye's relative contribution to binocular vision.

View Article and Find Full Text PDF

Leveraging Multivalent Assembly towards High-Temperature Liquid-Phase Phosphorescence.

Angew Chem Int Ed Engl

January 2025

Ningbo Institute of Materials Technology and Engineering CAS: Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering, Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, CHINA.

High-temperature phosphorescence (HTP) materials have attracted considerable attention owing to their expanded application prospects, whereas they still suffer from severe deactivation in polar media, limiting their reliability and utility. Here, we present an efficient multivalent assembly strategy to achieve high-temperature liquid-phase phosphorescence (HTLP). The supramolecular assembly of multivalent modules leads to extremely robust hydrogen-bonding networks, which firmly immobilize the organic phosphors and protect triplet excitons from annihilation in high-temperature polar media, resulting in excellent HTLP emission.

View Article and Find Full Text PDF

Head pose-assisted localization of facial landmarks for enhanced fast registration in skull base surgery.

Comput Med Imaging Graph

December 2024

School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, Beijing, PR China; Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, 450000, Henan, PR China. Electronic address:

In skull base surgery, the method of using a probe to draw or 3D scanners to acquire intraoperative facial point clouds for spatial registration presents several issues. Manual manipulation results in inefficiency and poor consistency. Traditional registration algorithms based on point clouds are highly dependent on the initial pose.

View Article and Find Full Text PDF

This study introduces an innovative approach to high-resolution latent fingerprint detection using carbon quantum dots (CQDs) biosynthesized from spent coffee grounds, enhanced with nitrogen doping. Conventional fingerprinting methods frequently use hazardous chemicals and are costly, highlighting the need for eco-friendly, affordable alternatives that preserve detection quality. The biosynthesized nitrogen-doped CQDs exhibit strong photoluminescence and high stability, offering a sustainable, effective alternative for fingerprint imaging.

View Article and Find Full Text PDF

Secondary intention healing (SIH) describes wounds healing from the base upwards, without direct closure. This starts with granulation of the wound, followed by re-epithelialisation and contraction. The surgeon and patient need to weigh up advantages and disadvantages of SIH versus other reconstruction methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!