Platinum-based chemotherapy failure represents a significant challenge in the management of ovarian cancer (OC) and contributes to disease recurrence and poor prognosis. Recent studies have shed light on the involvement of the gut microbiota in modulating anticancer treatments. However, the precise underlying mechanisms, by which gut microbiota regulates the response to platinum-based therapy, remain unclear. Here, we investigated the role of gut microbiota on the anticancer response of cisplatin and its underlying mechanisms. Our results demonstrate a substantial improvement in the anticancer efficacy of cisplatin following antibiotic-induced perturbation of the gut microbiota in OC-bearing mice. 16S rRNA sequencing showed a pronounced alteration in the composition of the gut microbiome in the cecum contents following exposure to cisplatin. Through metabolomic analysis, we identified distinct metabolic profiles in the antibiotic-treated group, with a notable enrichment of the gut-derived metabolite 3-methylxanthine in antibiotic-treated mice. Next, we employed a strategy combining transcriptome analysis and chemical-protein interaction network databases. We identified metabolites that shared structural similarity with 3-methylxanthine, which interacted with genes enriched in cancer-related pathways. It is identified that 3-methylxanthinesignificantly enhances the effectiveness of cisplatin by promoting apoptosis both and . Importantly, through integrative multiomics analyses, we elucidated the mechanistic basis of this enhanced apoptosis, revealing a dopamine receptor D1-dependent pathway mediated by 3-methylxanthine. This study elucidated the mechanism by which gut-derived metabolite 3-methylxanthine mediated cisplatin-induced apoptosis. Our findings highlight the potential translational significance of 3-methylxanthine as a promising adjuvant in conjunction with cisplatin, aiming to improve treatment outcomes for OC patients.IMPORTANCEThe precise correlation between the gut microbiota and the anticancer effect of cisplatin in OC remains inadequately understood. Our investigation has revealed that manipulation of the gut microbiota via the administration of antibiotics amplifies the efficacy of cisplatin through the facilitation of apoptosis in OC-bearing mice. Metabolomic analysis has demonstrated that the cecum content from antibiotic-treated mice exhibits an increase in the levels of 3-methylxanthine, which has been shown to potentially enhance the therapeutic effectiveness of cisplatin by an integrated multiomic analysis. This enhancement appears to be attributable to the promotion of cisplatin-induced apoptosis, with 3-methylxanthine potentially exerting its influence via the dopamine receptor D1-dependent pathway. These findings significantly contribute to our comprehension of the impact of the gut microbiota on the anticancer therapy in OC. Notably, the involvement of 3-methylxanthine suggests its prospective utility as a supplementary component for augmenting treatment outcomes in patients afflicted with ovarian cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264688PMC
http://dx.doi.org/10.1128/msystems.01301-23DOI Listing

Publication Analysis

Top Keywords

gut microbiota
28
gut-derived metabolite
12
metabolite 3-methylxanthine
12
cisplatin-induced apoptosis
12
dopamine receptor
12
ovarian cancer
12
microbiota anticancer
12
3-methylxanthine
9
gut
8
underlying mechanisms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!