A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Involvement of ribosomal protein L17 and Y-box binding protein 1 in the assembly of hepatitis C virus potentially via their interaction with the 3' untranslated region of the viral genome. | LitMetric

Unlabelled: The 3' untranslated region (3'UTR) of the hepatitis C virus (HCV) RNA genome, which contains a highly conserved 3' region named the 3'X-tail, plays an essential role in RNA replication and promotes viral IRES-dependent translation. Although our previous work has found a cis-acting element for genome encapsidation within 3'X, there is limited information on the involvement of the 3'UTR in particle formation. In this study, proteomic analyses identified host cell proteins that bind to the 3'UTR containing the 3'X region but not to the sequence lacking the 3'X. Further characterization showed that RNA-binding proteins, ribosomal protein L17 (RPL17), and Y-box binding protein 1 (YBX1) facilitate the efficient production of infectious HCV particles in the virus infection cells. Using small interfering RNA (siRNA)-mediated gene silencing in four assays that distinguish between the various stages of the HCV life cycle, RPL17 and YBX1 were found to be most important for particle assembly in the trans-packaging assay with replication-defective subgenomic RNA. assays showed that RPL17 and YBX1 bind to the 3'UTR RNA and deletion of the 3'X region attenuates their interaction. Knockdown of RPL17 or YBX1 resulted in reducing the amount of HCV RNA co-precipitating with the viral Core protein by RNA immunoprecipitation and increasing the relative distance in space between Core and double-stranded RNA by confocal imaging, suggesting that RPL17 and YBX1 potentially affect HCV RNA-Core interaction, leading to efficient nucleocapsid assembly. These host factors provide new clues to understanding the molecular mechanisms that regulate HCV particle formation.

Importance: Although basic research on the HCV life cycle has progressed significantly over the past two decades, our understanding of the molecular mechanisms that regulate the process of particle formation, in particular encapsidation of the genome or nucleocapsid assembly, has been limited. We present here, for the first time, that two RNA-binding proteins, RPL17 and YBX1, bind to the 3'X in the 3'UTR of the HCV genome, which potentially acts as a packaging signal, and facilitates the viral particle assembly. Our study revealed that RPL17 and YBX1 exert a positive effect on the interaction between HCV RNA and Core protein, suggesting that the presence of both host factors modulate an RNA structure or conformation suitable for packaging the viral genome. These findings help us to elucidate not only the regulatory mechanism of the particle assembly of HCV but also the function of host RNA-binding proteins during viral infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265288PMC
http://dx.doi.org/10.1128/jvi.00522-24DOI Listing

Publication Analysis

Top Keywords

rpl17 ybx1
24
hcv rna
12
rna-binding proteins
12
particle assembly
12
hcv
10
rna
10
ribosomal protein
8
protein l17
8
y-box binding
8
binding protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!