Selective Cleavage of C-O-4 Bond for Lignin Depolymerization via Paired-Electrolysis in an Undivided Cell.

Angew Chem Int Ed Engl

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, P. R. China.

Published: September 2024

The cleavage of C-O bonds is one of the most promising strategies for lignin-to-chemicals conversion, which has attracted considerable attention in recent years. However, current catalytic system capable of selectively breaking C-O bonds in lignin often requires a precious metal catalyst and/or harsh conditions such as high-pressure H and elevated temperatures. Herein, we report a novel protocol of paired electrolysis to effectively cleave the C-O-4 bond of lignin model compounds and real lignin at room temperature and ambient pressure. For the first time, "cathodic hydrogenolysis of C-O-4 linkage" and "anodic C-H/N-H cross-coupling reaction" are paired in an undivided cell, thus the cleavage of C-O bonds and the synthesis of valuable triarylamine derivatives could be simultaneously achieved in an energy-effective manner. This protocol features mild reaction conditions, high atom economy, remarkable yield with excellent chemoselectivity, and feasibility for large-scale synthesis. Mechanistic studies indicate that indirect H* (chemical absorbed hydrogen) reduction instead of direct electron transfer might be the pathway for the cathodic hydrogenolysis of C-O-4 linkage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202407750DOI Listing

Publication Analysis

Top Keywords

c-o bonds
12
c-o-4 bond
8
bond lignin
8
undivided cell
8
cell cleavage
8
cleavage c-o
8
hydrogenolysis c-o-4
8
selective cleavage
4
c-o-4
4
cleavage c-o-4
4

Similar Publications

Revealing the removal behavior of polystyrene nanoplastics and natural organic matter by AlTi-based coagulant from the perspective of functional groups.

J Hazard Mater

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China. Electronic address:

The interactions of nanoplastics (NPs) with natural organic matter (NOM) are influenced by their surface functional groups. In this study, the effects of representative functional groups on the interactions among polystyrene nanoplastics (PS-COOH and PS-NH), hydrophilic low molecular weight (LMW) substances (salicylic acid (SA), phthalic acid (PA), and gluconic acid (GA)), and a novel AlTi-based coagulant were investigated. We found that PS-NH (83.

View Article and Find Full Text PDF

Bacterial levans are biopolymers composed of fructose units linked by β-2,6 glycosidic bonds that are degradable, nontoxic and flexible, representing a green technology with significant applications across various industries. Fermented soybeans are a common source of bacteria-producing polysaccharides. In this study, KKSB4, KKSB6 and KKSB7 isolated from traditionally fermented soybean (Thua-nao), along with strain 5.

View Article and Find Full Text PDF

Cellulose, the most abundant biopolymer on Earth, is biodegradable, nontoxic, and derived from renewable sources. Its properties and applications depend on the extraction methods and sources, making plant waste reuse a sustainable production option. This study aimed to assess the potential of cowpea pod skin () as a source of microcellulose (CPMC) using a chemical-mechanical process involving ball milling combined with acid hydrolysis.

View Article and Find Full Text PDF

At present, plastic pollution is a global environmental catastrophe and a major threat to mankind. Moreover, the increasing manufacture of various plastic products is causing rapid depletion of precious resources. Thus, transforming plastic waste into feedstock, which can maintain a circular economy, has emerged as a significant technique for waste management and carbon resource conservation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!