Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) causes a devastating canker disease in yellow-fleshed kiwifruit (Actinidia chinensis). The effector HopZ5, which is present in all isolates of Psa3 causing global outbreaks of pandemic kiwifruit canker disease, triggers immunity in Nicotiana benthamiana and is not recognised in susceptible A. chinensis cultivars. In a search for N. benthamiana nonhost resistance genes against HopZ5, we found that the nucleotide-binding leucine-rich repeat receptor NbPTR1 recognised HopZ5. RPM1-interacting protein 4 orthologues from N. benthamiana and A. chinensis formed a complex with NbPTR1 and HopZ5 activity was able to disrupt this interaction. No functional orthologues of NbPTR1 were found in A. chinensis. NbPTR1 transformed into Psa3-susceptible A. chinensis var. chinensis 'Hort16A' plants introduced HopZ5-specific resistance against Psa3. Altogether, this study suggested that expressing NbPTR1 in Psa3-susceptible kiwifruit is a viable approach to acquiring resistance to Psa3 and it provides valuable information for engineering resistance in otherwise susceptible kiwifruit genotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.15002DOI Listing

Publication Analysis

Top Keywords

pseudomonas syringae
8
syringae actinidiae
8
canker disease
8
resistance psa3
8
nbptr1
6
chinensis
6
resistance
5
kiwifruit
5
nbptr1 confers
4
confers resistance
4

Similar Publications

Bacteriophage LDT325 enhances tolerance by improving antioxidant defense in tea plant [ (L.) O. Kuntze].

Front Microbiol

January 2025

School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China.

Bud blight caused by is a serious disease affecting tea plants and causing severe damage to production output and quality. Phages play an important role in controlling the development of bacterial diseases in plants. Previous studies have shown that the tolerance of phage-treated tea plants to bud blight was notably greater compared with that of the control group.

View Article and Find Full Text PDF

Bacteriophages as viral predators can restrict host strains and shape the bacterial community. Conversely, bacteria also adopt diverse strategies for phage defense. Pseudomonas syringae pv.

View Article and Find Full Text PDF

Kiwifruit canker, caused by pv. (PSA), has led to significant losses in the kiwifruit industry each year. Due to the drug resistance feature of PSA, biological control is currently the most promising method.

View Article and Find Full Text PDF

Crop diseases significantly threaten global food security, driving the need for innovative control strategies. This study explored using ZnO-TiO@MSC, a novel nanomaterial synthesized using a corn stover template, to enhance disease resistance in tomato plants. In vitro assays demonstrated potent antimicrobial activity of ZnO-TiO@MSC against the pathogen Pseudomonas syringae pv.

View Article and Find Full Text PDF

The flavonoid metabolic pathway genes Ac4CL1, Ac4CL3 and AcHCT1 positively regulate the kiwifruit immune response to Pseudomonas syringae pv. actinidiae.

Plant Mol Biol

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, China.

Psa primarily utilises the type III secretion system (T3SS) to deliver effector proteins (T3Es) into host cells, thereby regulating host immune responses. However, the mechanism by which kiwifruit responds to T3SS remains unclear. To elucidate the molecular reaction of kiwifruit plants to Psa infection, M228 and mutant M228△hrcS strains were employed to inoculate Actinidia chinensis var.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!