Purpose: Establishing zonal tendon-to-bone attachment could accelerate the anterior cruciate ligament reconstruction (ACLR) rehabilitation schedule and facilitate an earlier return to sports. KI24RGDS is a self-assembling peptide hydrogel scaffold (SAPS) with the RGDS amino acid sequence. This study aimed to elucidate the therapeutic potential of KI24RGDS in facilitating zonal tendon-to-bone attachment after ACLR.
Methods: Sixty-four C57BL/6 mice were divided into the ACLR + SAPS and ACLR groups. ACLR was performed using the tail tendon. To assess the maturation of tendon-to-bone attachment, we quantified the area of mineralized fibrocartilage (MFC) in the tendon graft with demeclocycline. Immunofluorescence staining of α-smooth muscle actin (α-SMA) was performed to evaluate progenitor cell proliferation. The strength of tendon-to-bone attachment was evaluated using a pull-out test.
Results: The MFC and maximum failure load in the ACLR + SAPS group were remarkably higher than in the ACLR group on Day 14. However, no significant difference was observed between the two groups on Day 28. The number of α-SMA-positive cells in the tendon graft was highest on Day 7 after ACLR in both the groups and was significantly higher in the ACLR + SAPS group than in the ACLR group.
Conclusion: This study highlighted the latent healing potential of KI24RGDS in facilitating early-stage zonal attachment of tendon grafts and bone tunnels post-ACLR. These findings may expedite rehabilitation protocols and shorten the timeline for returning to sports.
Level Of Evidence: Not applicable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185946 | PMC |
http://dx.doi.org/10.1002/jeo2.12061 | DOI Listing |
J Am Acad Orthop Surg
December 2024
From the Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA (Dr. Dyment, Dr. Kamalitdinov, and Dr. Kuntz), and the Department of Bioengineering, University of Pennsylvania, Philadelphia, PA (Dr. Dyment and Dr. Kamalitdinov).
The work in this article summarizes findings from our group on key biochemical cues that govern the formation and repair of tendons and ligaments. Specifically, we summarize the journey that started with a serendipitous discovery that is now being translated into novel therapies to improve tendon-to-bone repair outcomes. This journey began with the discovery that the Hedgehog (Hh) signaling pathway was expressed within the enthesis during development and that its primary role was to promote fibrocartilage production and maturation.
View Article and Find Full Text PDFPurpose: Establishing zonal tendon-to-bone attachment could accelerate the anterior cruciate ligament reconstruction (ACLR) rehabilitation schedule and facilitate an earlier return to sports. KI24RGDS is a self-assembling peptide hydrogel scaffold (SAPS) with the RGDS amino acid sequence. This study aimed to elucidate the therapeutic potential of KI24RGDS in facilitating zonal tendon-to-bone attachment after ACLR.
View Article and Find Full Text PDFSci Rep
March 2024
Wuhan Fourth Hospital, Wuhan, 430030, China.
Currently, the predominant method for repairing rotator cuff involves surgical suture techniques, but the failure rate remains notably high. Failure of the rotator cuff insertion to provide adequate biomechanics during early healing is considered a major cause of failure. Addressing this problem, biological augmentation emerges as a promising strategy for enhancing the biomechanical properties during early stages.
View Article and Find Full Text PDFConnect Tissue Res
January 2024
Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
Rotator cuff pathology is a common musculoskeletal condition that disproportionately affects older adults, as well as patients with diabetes mellitus and chronic kidney disease. It is known that increased age and kidney dysfunction have been correlated to acidotic states, which may be related to the increased incidence of rotator cuff injury. In order to investigate the potential relationship between acidosis and rotator cuff composition and mechanics, this study utilizes a 14-day murine model of metabolic acidosis and examines the effects on the supraspinatus tendon-humeral head attachment complex.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2023
Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan. Electronic address:
Tendons and their attachment sites to bone, fibrocartilaginous tissues, have poor self-repair capacity when they rupture, and have risks of retear even after surgical repair. Thus, defining mechanisms underlying their repair is required in order to stimulate tendon repairing capacity. Here we used a rat surgical rotator cuff tear repair model and identified cells expressing the transcription factors Scleraxis (Scx) and SRY-box 9 (Sox9) as playing a crucial role in rotator cuff tendon-to-bone repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!