A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Accuracy of Bayesian Model Fit Indices in Selecting Among Multidimensional Item Response Theory Models. | LitMetric

Item response theory (IRT) models are often compared with respect to predictive performance to determine the dimensionality of rating scale data. However, such model comparisons could be biased toward nested-dimensionality IRT models (e.g., the bifactor model) when comparing those models with non-nested-dimensionality IRT models (e.g., a unidimensional or a between-item-dimensionality model). The reason is that, compared with non-nested-dimensionality models, nested-dimensionality models could have a greater propensity to fit data that do not represent a specific dimensional structure. However, it is unclear as to what degree model comparison results are biased toward nested-dimensionality IRT models when the data represent specific dimensional structures and when Bayesian estimation and model comparison indices are used. We conducted a simulation study to add clarity to this issue. We examined the accuracy of four Bayesian predictive performance indices at differentiating among non-nested- and nested-dimensionality IRT models. The deviance information criterion (DIC), a commonly used index to compare Bayesian models, was extremely biased toward nested-dimensionality IRT models, favoring them even when non-nested-dimensionality models were the correct models. The Pareto-smoothed importance sampling approximation of the leave-one-out cross-validation was the least biased, with the Watanabe information criterion and the log-predicted marginal likelihood closely following. The findings demonstrate that nested-dimensionality IRT models are not automatically favored when the data represent specific dimensional structures as long as an appropriate predictive performance index is used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185105PMC
http://dx.doi.org/10.1177/00131644231165520DOI Listing

Publication Analysis

Top Keywords

irt models
28
nested-dimensionality irt
20
models
14
predictive performance
12
biased nested-dimensionality
12
data represent
12
represent specific
12
specific dimensional
12
accuracy bayesian
8
item response
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!