The desire to commercialize perovskite solar cells continues to mount, motivating the development of scalable production. Evaluations of the impact of open-air processing have revealed a variety of physical changes in the fabricated devices─with few changes having the capacity to be functionalized. Here, we highlight the beneficial role of ambient oxygen during the open-air thermal processing of metastable γ-CsPbI-based perovskite thin films and devices. Physiochemical-sensitive probes elucidate oxygen intercalation and the formation of Pb-O bonds in the CsPbI crystal, entering via iodine vacancies at the surface, creating superoxide (O) through electron transfer reactions with molecular oxygen, which drives the formation of a zero-dimensional CsPbI capping layer during annealing (>330 °C). The chemical conversion permanently alters the film structure, helping to shield the subsurface perovskite from moisture and introduces lattice anchoring sites, stabilizing otherwise unstable γ-CsPbI films. This functional modification is demonstrated in γ-CsPbIBr perovskite solar cells, boosting the operational stability and photoconversion efficiency of champion devices from 12.7 to 15.4% when annealed in dry air. Such findings prompt a reconsideration of glovebox-based perovskite solar cell research and establish a scenario where device fabrication can in fact greatly benefit from ambient oxygen.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c03222DOI Listing

Publication Analysis

Top Keywords

perovskite solar
16
open-air thermal
8
thermal processing
8
solar cell
8
solar cells
8
ambient oxygen
8
perovskite
6
oxygen-mediated cspbx
4
cspbx formation
4
formation open-air
4

Similar Publications

Achieving rational control over chemical and energetic properties at the perovskite/electron transport layer (ETL) interface is crucial for realizing highly efficient and stable next-generation inverted perovskite solar cells (PSCs). To address this, we developed multifunctional ferrocene (Fc)-based interlayers engineered to exhibit adjustable passivating and electrochemical characteristics. These interlayers are designed to minimize non-radiative recombination and, to modulate the work function (WF) and uniformity of the perovskite surface, thereby enhancing device performance.

View Article and Find Full Text PDF

Chemically tuned organic-inorganic hybrid halide perovskites based on bromide and chloride anions CH(NH)Pb(BrCl) (CH(NH): formamidinium ion, FA) have been crystallized and investigated by neutron powder diffraction (NPD), single crystal X-ray diffraction (SCXRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. FAPbBr and FAPbCl experience successive phase transitions upon cooling, lowering the symmetry from cubic to orthorhombic phases; however, these transitions are not observed for the mixed halide phases, probably due to compositional disorder. The band-gap engineering brought about by the chemical doping of FAPb (BrCl) perovskites (x = 0.

View Article and Find Full Text PDF

From Sunlight to Solutions: Closing the Loop on Halide Perovskites.

ACS Mater Au

January 2025

Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, Knoxville, Tennessee 37996, United States.

Halide perovskites (HPs) are emerging as key materials in the fight against global warming with well recognized applications, such as photovoltaics, and emergent opportunities, such as photocatalysis for methane removal and environmental remediation. These current and emergent applications are enabled by a unique combination of high absorption coefficients, tunable band gaps, and long carrier diffusion lengths, making them highly efficient for solar energy conversion. To address the challenge of discovery and optimization of HPs in huge chemical and compositional spaces of possible candidates, this perspective discusses a comprehensive strategy for screening HPs through automated high-throughput and combinatorial synthesis techniques.

View Article and Find Full Text PDF

The Aging Chemistry of Perovskite Precursor Solutions.

J Phys Chem Lett

January 2025

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.

A significant barrier to the commercialization of solution-processed perovskite solar cells (PSCs) is the chemical instability of the components in precursor solutions under ambient conditions. This instability leads to solution aging, which subsequently diminishes the quality and reproducibility of the resulting PSCs. Inspired by recent published works, which focused on the deprotonation of organic cations, the oxidation of iodide, and the formation of undesired byproducts, we here systematically summarize and provide an outlook on the research directions and perspectives of the origin of precursor solution aging and countermeasures, such as using stabilizing additives, redox shuttles, Schiff base reactions, and green solvents.

View Article and Find Full Text PDF

Mitigating the Efficiency Deficit in Single-Crystal Perovskite Solar Cells by Precise Control of the Growth Processes.

ACS Nano

January 2025

Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.

The power conversion efficiencies (PCEs) of polycrystalline perovskite solar cells (PC-PSCs) have now reached a plateau after a decade of rapid development, leaving a distinct gap from their Shockley-Queisser limit. To continuously mitigate the PCE deficit, nonradiative carrier losses resulting from defects should be further optimized. Single-crystal perovskites are considered an ideal platform to study the efficiency limit of perovskite solar cells due to their intrinsically low defect density, as demonstrated in bulk single crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!